Skip to main content
Log in

Effect of Shot Peening Operation on the Microstructure and Wear Behavior of AZ31 Magnesium Alloy

  • NEW SUBSTANCES, MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Shot peening is a treatment used to increase surface hardness and wear resistance. In this study, the effect of shot peening on the microstructure, hardness and wear resistance of AZ31 magnesium alloy was investigated. For this purpose, specimens were exposed to shot peening operation using steel pellets for periods of 20, 40, 60, and 80 min. Microstructures were investigated using a scanning electron microscope (SEM) and X-Ray diffraction (XRD). In addition, the Vickers method and the pin on disk method were used to measure the hardness and wear for testing, respectively. The results showed that the shot peening operation resulted in grain refining on the surface, in addition, the wear resistance increased with increasing shot peening time. This is because of grain refining on the surface and the micro strains created by shot peening. Assessment of surface wearing indicated the application of an adhesive wear mechanism on the untreated specimen and the abrasive wear mechanism in the shot peened specimens. Moreover, by increasing the duration of shot peening, the abrasive wear decreased due to increased hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Laleh, M. and Kargar F., J. Alloys Compd., 2011, vol. 509, no. 37, p. 9150.

    Article  CAS  Google Scholar 

  2. Fouad, Y. and El-Batanouny, M., AlexandriaEng. J., 2011, vol. 50, no. 1, pp. 19–22.

    CAS  Google Scholar 

  3. Xu, C., Sheng, G., Sun, Y., Yuan, X., and Jiao, Y., Sci. Technol. Weld. Joining, 2018, vol. 23, no. 1, pp. 28–34.

    Article  CAS  Google Scholar 

  4. Laleh, M., Rouhaghdam, A.S., Shahrabi, T., and Shanghi, A., J. Alloys Compd., 2010, vol. 496, nos. 1–2, pp. 548–552.

    Article  CAS  Google Scholar 

  5. Xu, K., Wang, A., Wang, Y., Dong, X., Zhang, X., and Huang, Z., Appl. Surf. Sci., 2009, vol. 256, no. 3, pp. 619–626.

    Article  CAS  Google Scholar 

  6. Hwang, D.Y., Kim, Y.M., Park, D-Y., Yoo, B., and Shin, D.H., Electrochim. Acta, 2009, vol. 54, no. 23, pp. 5479–5485.

    Article  CAS  Google Scholar 

  7. Mueller, K. and Mueller, S., J. Mater. Process. Technol., 2007, vol. 187, pp. 775–779.

    Article  Google Scholar 

  8. Hassani-Gangaraj, S., Cho, K., Voigt, H.-J., Guagliano, M., and Schuh, C., Acta Mater., 2015, vol. 97, pp. 105–115.

    Article  CAS  Google Scholar 

  9. Wang, Z., Tao, N., Tong, W., Lu, J., and Lu, K., Acta Mater., 2003, vol. 51, no. 14, pp. 4319–4329.

    Article  CAS  Google Scholar 

  10. Tao, N., Wang, Z., Tong, W., Sui, M., Lu, J., and Lu, K., Acta Mater., 2002, vol. 50, no. 18, pp. 4603–4616.

    Article  CAS  Google Scholar 

  11. Li, W., Liu, P., Ma, F., Liu, X., and Rong, Y., J. Alloys Compd., 2011, vol. 509, no. 2, pp. 518–522.

    Article  CAS  Google Scholar 

  12. Barnett, M., Nave, M., and Bettles, C., Mater. Sci. Eng., A, 2004, vol. 386, nos. 1–2, pp. 205–211.

    Article  Google Scholar 

  13. Valiev, R., J. Mater. Sci., 2007, vol. 42, no. 5, pp. 1483–1490.

    Article  CAS  Google Scholar 

  14. Hou, L.-F., Wei, Y.-H., Liu, B.-S., and Xu, B.-S., Trans. Nonferrous Met. Soc. China, 2008, vol. 18, no. 5, pp. 1053–1057.

    Article  CAS  Google Scholar 

  15. Révész, Á., Szommer, P., Szabó, P., and Varga, L., J. Alloys Compd., 2011, vol. 509, pp. S482–S485.

    Article  Google Scholar 

  16. Revesz, A. and Takacs, L., J. Alloys Compd., 2007, vol. 441, nos. 1–2, pp. 111–114.

    Article  CAS  Google Scholar 

  17. Lu, K. and Lu, J., Mater. Sci. Eng., A, 2004, vol. 375, pp. 38–45.

    Article  Google Scholar 

  18. Tao, N., Lu, K., Scr. Mater., 2009, vol. 60, no. 12, pp. 1039–1043.

    Article  CAS  Google Scholar 

  19. Wei, Y.-H., Liu, B.-S., Hou, L.-F., Xu, B.-S., and Liu, G., J. Alloys Compd., 2008, vol. 452, no. 2, pp. 336–342.

    Article  CAS  Google Scholar 

  20. Balusamy, T., Narayanan, T.S., and Ravichandran, K., Surf. Coat. Technol., 2012, vol. 213, pp. 221–228.

    Article  CAS  Google Scholar 

  21. Paydar, H., Amini, K., and Akhbarizadeh, A., Kovove Mater., 2014, vol. 52, pp. 163–169.

    CAS  Google Scholar 

  22. Bagherifard, S., Hickey, D.J., Fintová, S., Pastorek, F., Fernandez-Pariente, I., Bandini, M., et al., Acta Biomater., 2018, vol. 66, pp. 93–108.

    Article  CAS  Google Scholar 

  23. Zhang, H., Hei, Z., Liu, G., Lu, J., and Lu, K., Acta Mater., 2003, vol. 51, no. 7, p. 1871.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Amini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighi, O., Amini, K. & Gharavi, F. Effect of Shot Peening Operation on the Microstructure and Wear Behavior of AZ31 Magnesium Alloy. Prot Met Phys Chem Surf 56, 164–168 (2020). https://doi.org/10.1134/S2070205120010098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120010098

Keywords:

Navigation