Skip to main content
Log in

Remarkable Mechanism of the Reaction between Mixed Phosphonium-Iodonium Ylides and Acetylenes

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Reactions of mixed phosphonium-iodonium ylides with nitriles and acetylenes allow for the synthesis of not easily accessible and novel heterocyclic compounds in a simple, one-pot, metal-free system. The results of the mechanistic investigation of the reaction of the phosphonium-iodonium ylides with acetylenes by means of spectrophotometry, EPR and NMR spectroscopy are discussed in this review. This investigation allows to account for unusual regularities of these reactions: induction time, acid catalysis, chemically induced dynamic nuclear polarization effect (CIDNP) observed in several systems, and others. The radical character of the initiation of the reaction as a result of acid catalysis of the ylides decomposition on radicals and the participation of radical intermediates in the formation of all target products have been unambiguously established. The mechanism of generation of radical pairs in CIDNP was suggested, and the role of microheterogeniety of the ylide solutions in methylene chloride was substantiated. On the basis of the study of the reaction mechanism, the conditions for the increase in the yields of new heterocyclic compounds can be optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Neiland, O. and Vanags, G., Dokl. Akad. Nauk SSSR, 1964, vol. 159, p. 373.

    Google Scholar 

  2. Moriarty, R.M., Prakash, I., Prakash, O., and Freeman, W.A.,J. Am. Chem. Soc., 1984, vol. 106, p. 6082.

    Article  CAS  Google Scholar 

  3. Huang, Z.-Zh., Yu, X.-Ch., and Huang, X., Tetrahedron Lett., 2002, vol. 43, p. 6823.

    Article  CAS  Google Scholar 

  4. Huang, Z.-Zh., Yu, X.-Ch., and Huang, X., J. Org. Chem., 2002, vol. 67, p. 8261.

    Article  CAS  Google Scholar 

  5. Zhdankin, V.V., Maydanovych, O., Herschbach, J., Bruno, J., Matveeva, E.D., and Zefirov, N.S., Tetrahedron Lett., 2002, vol. 43, p. 2359.

    Article  CAS  Google Scholar 

  6. Zhdankin, V.V., Maydanovych, O., Herschbach, J., Bruno, J., Matveeva, E.D., and Zefirov, N.S., J. Org. Chem., 2003, vol. 68, p. 1018.

    Article  CAS  Google Scholar 

  7. Matveeva, E.D., Podrugina, T.A., Grishin, Yu.K., Tkachev, V.V., Zhdankin, V.V., Aldoshin, S.M., and Zefirov, N.S., Russ. J. Org. Chem., 2003, vol. 39, p. 536.

    Article  CAS  Google Scholar 

  8. Matveeva, E.D., Podrugina, T.A., Pavlova, A.S., Mironov, A.V., and Zefirov, N.S., Russ. Chem. Bull., 2008, vol. 57, p. 400.

    Article  CAS  Google Scholar 

  9. Matveeva, E.D., Podrugina, T.A., Grishin, Yu.K., Pavlova, A.S., and Zefirov, N.S., Russ. J. Org. Chem., 2007, vol. 43, p. 201.

    Article  CAS  Google Scholar 

  10. Matveeva, E.D., Podrugina, T.A., Pavlova, A.S., Mironov, A.V., Gleiter, R., and Zefirov, N.S., Eur. J. Org. Chem., 2009, vol. 14, p. 2323.

    Article  Google Scholar 

  11. Nekipelova, T.D., Kuzmin, V.A., Matveeva, E.D., Gleiter R., and Zefirov N.S., J. Phys. Org. Chem., 2013, vol. 26, p. 137.

    Article  CAS  Google Scholar 

  12. Matveeva, E.D., Podrugina, T.A., Pavlova, A.S., Mironov, A.V., and Zefirov, N.S., Russ. Chem. Bull., 2008, vol. 57, p. 2237.

    Article  CAS  Google Scholar 

  13. Matveeva, E.D., Podrugina, T.A., Pavlova, A.S., Mironov, A.V., Borisenko, A.A., Gleiter, R., and Zefirov, N.S., J. Org. Chem., 2009, vol. 74, p. 9428.

    Article  CAS  Google Scholar 

  14. Matveeva, E.D., Podrugina, T.A., Taranova, M.A., Borisenko, A.A., Mironov, A.V., Gleiter, R., and Zefirov, N.S., J. Org. Chem., 2011, vol. 76, p. 566.

    Article  CAS  Google Scholar 

  15. Matveeva, E.D., Podrugina, T.A., Taranova, M.A., Ivanova, A.M., Gleiter, R., and Zefirov, N.S., J. Org. Chem., 2012, vol. 77, p. 5770.

    Article  CAS  Google Scholar 

  16. Matveeva, E.D., Podrugina, T.A., Taranova, M.A., Melikhova, E.Y., Gleiter, R., and Zefirov, N.S., Tetrahedron, 2013, vol. 69, p. 7395.

    Article  CAS  Google Scholar 

  17. Baumgartner, T., Acc. Chem. Res., 2014, vol. 47, p. 1613.

    Article  CAS  Google Scholar 

  18. Duffy, M.P., Delaunay, W., Bouit, P.A., and Hissler, M., Chem. Soc. Rev., 2016, vol. 45, p. 5296.

    Article  CAS  Google Scholar 

  19. Regulska, E. and Romero-Nieto, C., Dalton Trans., 2018, vol. 47, p. 10344.

    Article  CAS  Google Scholar 

  20. Belyaev, A., Chen, Y.-T., Su, S.-H., Tseng, Y.-J., Karttunen, A.J., Tunik, S.P., Chou, P.-T., and Koshevoy, I.O., Chem. Commun., 2017, vol. 53, p. 10954.

    Article  CAS  Google Scholar 

  21. Zhang, D., Song, H., Cheng, N., and Liao, W.-W., Org. Lett., 2019, vol. 21, p. 2745.

    Article  CAS  Google Scholar 

  22. Levina, I.I., Klimovich, O.N., Bormotov, D.S., Vinogradov, D.S., Kononikhin, A.S., Dement’eva, O.V., Senchikhin, I.N., Podrugina, T.A., Nikolaev, E.N., Kuzmin, V.A., and Nekipelova, T.D., J. Phys. Org. Chem., 2018, p. e3844. https://doi.org/10.1002/poc.3844

  23. Nekipelova, T.D., Taranova, M.A., Matveeva, E.D., Podrugina, T.A., Kuzmin, V.A., and Zefirov, N.S., Dokl. Chem., 2012, vol. 447, part 1, p. 262.

    Article  CAS  Google Scholar 

  24. Levina, I.I., Tarasov, V.F., Podrugina, T.A., and Nekipelova, T.D., RSC Adv., 2019, vol. 9, p. 26219. https://doi.org/10.1039/c9ra05697

    Article  CAS  Google Scholar 

  25. Nekipelova, T.D., Taranova, M.A., Matveeva, E.D., Kuzmin, V.A., and Zefirov, N.S., Kinet. Catal., 2015, vol. 56, p. 403.

    Article  CAS  Google Scholar 

  26. Nekipelova, T.D., Podrugina, T.A., Vinogradov, D.S., Dem’yanov, P.I., and Kuzmin, V.A., Kinet. Catal., 2019, vol. 60, p. 44.

    Article  CAS  Google Scholar 

  27. Dektar, J.L. and Hacker, N.P., J. Org. Chem., 1990, vol. 55, p. 639.

    Article  CAS  Google Scholar 

  28. Kampmeief, J.A. and Nalli, T.W., J. Org. Chem., 1994, vol. 59, p. 1381.

    Article  Google Scholar 

  29. Nekipelova, T.D., Kasparov, V.V., Kovarckii, A.L., Vorobiev, A.Kh., Podrugina, T.A., Vinogradov, D.S., Kuzmin, V.A., and Zefirov, N.S., Dokl. Phys. Chem., 2017, vol. 474, part 2, p. 109.

    Article  CAS  Google Scholar 

  30. Symons, J.P. and Yarwood, A.J., Trans. Faraday Soc., 1963, vol. 59, p. 90.

    Article  Google Scholar 

  31. Mikheev, Yu.A., Pustoshnyi, V.P., and Toptygin, D.Ya., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1976, vol. 25, p. 1962.

    Article  Google Scholar 

  32. Okuyama, T., Takino, T., Sato, K., and Ochiai, M., J. Am. Chem. Soc., 1998, vol. 120, p. 2275.

    Article  CAS  Google Scholar 

  33. Nekipelova, T.D., Motyakin, M.V., Kasparov, V.V., Degtyarev, E.N., Levina, I.I., Potapov, I.D., and Podrugina, T.A., Rus. J. Phys. Chem B., 2019, vol. 13, no. 6, p. 907.

    Article  CAS  Google Scholar 

  34. Matveeva, E.D., Vinogradov, D.S., Podrugina, T.A., Nekipelova, T.D., Mironov, A.V., Gleiter, R., and Zefirov, N.S., Eur. J. Org. Chem., 2015, p. 7324.

  35. Kaptein, R., Adv.Free-Radical Chem., 1975, vol. 5, p. 319.

    CAS  Google Scholar 

  36. Salikhov, K.M., Molin, Yu.N., Sagdeev, R. Z., and Buchachenko A.L., “Spin Polarization and Magnetic Effects in Radical reactions”, Ed. Yu. N. Molin, Elsevier, Amsterdam; Akadémiai Kiadó, Budapest, 1984.

  37. Gragerov, I.P., Levit, A.F., Kiprianova, L.A., and Buchachenko, A.L., Org. Magn. Resonance., 1973, vol. 5, p. 445.

    Article  CAS  Google Scholar 

  38. Skruntz, L.K., Levit, A.F., Kiprianova, L.A., and Gragerov, I.P., Zh. Org. Khim., 1980, vol. 16, p. 604.

    Google Scholar 

  39. Levin, Ya.A., Dokl. Acad. Nauk SSSR, 1976, vol. 230, p. 358.

    CAS  Google Scholar 

  40. Levin, Ya.A., Il’yasov, A.V., Goldfarb, E.I., and Vorkunova, E.I., Org. Magn. Resonance, 1973, vol. 5, p. 487.

    Article  CAS  Google Scholar 

  41. Pobedimsky, D.G., Kirpichnikov, P.A., Samitov, Yu.Yu., and Goldfarb, E.I., Org. Magn. Resonance, 1973, vol. 5, p. 503.

    Article  CAS  Google Scholar 

  42. Ananchenko, G.S., Purtov, P.A., Bagryanskaya, E.G., and Sagdeev, R.Z., J. Phys. Chem. A, 1999, vol. 103, p. 3430.

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out within RF State Program for Emanuel Institute of Biochemical Physics, Russian Academy of Sciences no. 1201253303.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Nekipelova.

Additional information

Abbreviations: EPR, electron paramagnetic resonance; NMR, nuclear magnetic resonance; TFA, trifluoroacetic acid; TEMPOL, 2,2,6,6-tetramethyl-4-hydroxypiperidyl-1-oxyl; DMFA, N,N-dimethlformamide; HFC, hyperfine coupling; CIDNP, chemically induced dynamic nuclear polarization; SET, single electron transfer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekipelova, T.D., Podrugina, T.A. Remarkable Mechanism of the Reaction between Mixed Phosphonium-Iodonium Ylides and Acetylenes. Kinet Catal 61, 159–173 (2020). https://doi.org/10.1134/S0023158420020093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420020093

Keywords:

Navigation