Skip to main content
Log in

Theoretical Study of Deoxygenation of Esters on Small Pt–Sn Intermetallic Clusters

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The mechanisms of reactions occurring during deoxygenation of esters on Pt and intermetallic Pt–Sn catalysts (hydrodeoxygenation (stepwise and concerted mechanisms); reactions starting with C–C, C–O, or C–H bond cleavage or simultaneous cleavage of C–O and C–H bonds; and ester pyrolysis) were studied by the density functional theory. The computations showed that on Pt and Pt–Sn intermetallics with low tin contents, the activation barriers of reactions occurring without carbon mass loss on formation of carbon oxides and methane were comparable to the activation barriers of cracking reactions leading to this loss. As the Sn content in the intermetallics increased, the activation barriers increased significantly for the cracking reactions, but insignificantly for the reactions occurring without carbon mass loss. This probably explains the observed high selectivity of Pt–Sn (1 : 5) bimetallic catalysts in the hydrodeoxygenation of esters and triglycerides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 2.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Sarker, S., Lamb, J.J., Hjelme, D.R., and Lien, K.M., Fuel, 2018, vol. 226, p. 686.

    Article  CAS  Google Scholar 

  2. Rothermel, J., Renewable Raw Materials in the EU Chemical Industry http://dechema.de/Datei_Download-p-20014215-dateityp-ap-tagung-757-file-7206.html

  3. Knothe, G., Prog. Energy Combust. Sci., 2010, vol. 36, no. 3, p. 364

    Article  CAS  Google Scholar 

  4. Mohammad, M., Hari, T.K., Yaakob, Z., Sharma, Y.C., and Sopian, K., Renewable Sustainable Energy Rev., 2013, vol. 22, p. 121.

    Article  CAS  Google Scholar 

  5. Knothe, G. and Razon, L.F., Prog. Energy Combust. Sci., 2017, vol. 58, p. 36.

    Article  Google Scholar 

  6. Bezergianni, S. and Dimitriadis, A., Renewable Sustainable Energy Rev., 2013, vol. 21, p. 110.

    Article  CAS  Google Scholar 

  7. Kordulis, C., Bourikas, K., Gousi, M., Kordouli, E., and Lycourghiotis, A., Appl. Catal., B, 2016, vol. 181, p. 156.

    Article  CAS  Google Scholar 

  8. Seifi, H. and Sadrameli, S.M., J. Anal. Appl. Pyrolysis, 2016, vol. 121, p. 1.

    Article  CAS  Google Scholar 

  9. Palanisamy, S. and Gevert, B.S., Appl. Therm. Eng., 2016, vol. 107, p. 301.

    Article  CAS  Google Scholar 

  10. DePuy, C.H. and King, R.W., Chem. Rev., 1960, vol. 60, no. 5, p. 431.

    Article  CAS  Google Scholar 

  11. Kubátová, A., Luo, Y., Štávová, J., Sadrameli, S.M., Aulich, T., Kozliak, E., and Seames, W., Fuel, 2011, vol. 90, no. 8, p. 2598.

    Article  CAS  Google Scholar 

  12. Kozliak, E., Mota, R., Rodriguez, D., Overby, P., Kubátová, A., Stahl, D., Niri, V., Ogden, G., and Seames, W., Ind. Crops. Prod., 2013, vol. 43, p. 386.

    Article  CAS  Google Scholar 

  13. Adkins, H., Organic Reactions, New York: Wiley, 1951.

  14. Gutsche, B., Röẞler, H., and Würkert, S. Handbook of Heterogeneous Catalysis, Weinheim: Wiley, 2008, vol. 1, p. 3329.

    Google Scholar 

  15. Normann, W., Z. Angew. Chem., 1931, vol. 44, no. 35, p. 714.

    Article  CAS  Google Scholar 

  16. Wojcik, B. and Adkins, H., J. Am. Chem. Soc., 1933, vol. 55, no. 3, p. 1293.

    Article  CAS  Google Scholar 

  17. Hosman, B.B.A., van Steenis, J., and Waterman, H.I., Recueil., 1949, vol. 68, p. 939.

    Article  CAS  Google Scholar 

  18. Santillan-Jimenez, E., Morgan, T., Loe, R., and Crocker, M., Catal. Today, 2015, vol. 258, p. 284.

    Article  CAS  Google Scholar 

  19. Chen, L., Zhang, F., Li, G., and Li, X., Appl. Catal., A, 2017, vol. 529, p. 175.

  20. Itthibenchapong, V., Srifa, A., Kaewmeesri, R., Kidkhunthod, P., and Faungnawakij, K., Energy Convers. Manage., 2017, vol. 134, p. 188.

    Article  CAS  Google Scholar 

  21. Zhang, H., Lin, H., Wang, W., Zheng, Y., and Hu, P., Appl. Catal., B, 2014, vols. 150–151, p. 238.

    Article  CAS  Google Scholar 

  22. Liang, J., Ding, R., Wu, Y., Chen, Y., Wu, K., Meng, Y., Yang, M., and Wang, Y., J. Mol. Catal. A: Chem., 2016, vol. 411, p. 95.

    Article  CAS  Google Scholar 

  23. Ding, R., Wu, Y., Chen, Y., Liang, J., Liu, J., and Yang, M., Chem. Eng. Sci., 2015, vol. 135, p. 517.

    Article  CAS  Google Scholar 

  24. Orozco, L.M., Echeverri, D.A., Sánchez, L., and Rios, L.A., Chem. Eng. J., 2017, vol. 322, p. 149.

    Article  CAS  Google Scholar 

  25. Peroni, M., Mancino, G., Baráth, E., Gutiérrez, O.Y., and Lerchera, J.A., Appl. Catal., B, 2016, vol. 180, p. 301.

    Article  CAS  Google Scholar 

  26. Wang, H.-Y., Jiao, T.-T., Li, Z.-X., Li, C.-S., Zhang, S.-J., and Zhang, J.-L., Fuel Process. Technol., 2015, vol. 139, p. 91.

    Article  CAS  Google Scholar 

  27. Onyestyák, G., Harnos, S., Štolcová, M., Kaszonyi, A., and Kalló, D., Catal. Commun., 2013, vol. 40, p. 32.

    Article  CAS  Google Scholar 

  28. Zhou, L. and Lawal, A., Appl. Catal., A, 2017, vol. 532, p. 40.

  29. Wang, C., Liu, Q., Liu, X., Yan, L., Luo, C., Wang, L., Wang, B., and Tian, Z., Chin. J. Catal., 2013, vol. 34, p. 1128.

    Article  CAS  Google Scholar 

  30. Chen, N., Gong, S., Shirai, H., Watanabe, T., and Qian, E.W., Appl. Catal., A, 2013, vol. 466, p. 105.

  31. Sun, K., Schulz, T.C., Thompson, S.T., and Lamb, H.H., Catal. Today, 2016, vol. 269, p. 93.

    Article  CAS  Google Scholar 

  32. Wang, W.-C., Thapaliya, N., Campos, A., Stikeleather, L.F., and Roberts, W.L., Fuel, 2012, vol. 95, p. 622.

    Article  CAS  Google Scholar 

  33. Raut, R., Banakar, V.V., and Darbha, S., J. Mol. Catal. A: Chem., 2016, vol. 417, p. 126.

    Article  CAS  Google Scholar 

  34. Chen, H., Wu, Y., Qi, S., Chen, Y., and Yang, M., Appl. Catal., A, 2017, vol. 529, p. 79.

  35. Bhattacharjee, S. and Tan, C.-S., J. Cleaner Prod., 2017, vol. 156, p. 203.

    Article  CAS  Google Scholar 

  36. Janampelli, S. and Darbha, S., Mol. Catal., 2018, vol. 451, p. 125.

    Article  CAS  Google Scholar 

  37. Janampelli, S. and Darbha, S., Catal. Today, 2018, vol. 309, p. 219.

    Article  CAS  Google Scholar 

  38. Choi, I.-H., Lee, J.-S., Kim, C.-U., Kim, T.-W., Lee, K.-Y., and Hwang, K.-R., Fuel, 2018, vol. 215, p. 675.

    Article  CAS  Google Scholar 

  39. Chen, N., Ren, Y., and Qian, E.W., J. Catal., 2016, vol. 334, p. 79.

    Article  CAS  Google Scholar 

  40. Yeh, T.M., Hockstad, R.L., Linic, S., and Savage, P.E., Fuel, 2015, vol. 156, p. 219.

    Article  CAS  Google Scholar 

  41. Pouilloux, Y., Autin, F., Guimon, C., and Barrault, J., J. Catal., 1998, vol. 176, p. 215.

    Article  CAS  Google Scholar 

  42. Tsodikov, M.V., Chistyakov, A.V., and Netrusov, A.I., Produkty biomassy i ikh prevrashcheniya v komponenty topliv i monomery (Biomass Products and their Conversion to Fuel Components and Monomers), Lambert, 2017.

  43. Zharova, P.A., Chistyakov, A.V., Shapovalov, S.S., Pasynskii, A.A., and Tsodikov, M.V., Mendeleev Commun., 2018, vol. 28, p. 91.

    Article  CAS  Google Scholar 

  44. Chistyakov, A.V., Zharova, P.A., Tsodikov, M.V., Murzin, V.Yu., Moiseev, I.I., Shapovalov, S.S., Pasinskiy, A.A., and Gekhman, A.E., Dokl. Chem., 2015, vol. 460, no. 1, p. 57.

    Article  CAS  Google Scholar 

  45. Shapovalov, S.S., Pasynskii, A.A., Torubaev, Yu.V., Skabitskii, I.V., Sheer, M., and Bodenshtainer, M., Russ. J. Coord. Chem., 2014, vol. 40, no. 3, p. 131.

    Article  CAS  Google Scholar 

  46. Hachemi, I. and Murzin, D.Yu., Chem. Eng. J., 2018, vol. 334, p. 2201.

    Article  CAS  Google Scholar 

  47. Lu, J., Faheem, M., Behtash, S., and Heyden, A., J. Catal., 2015, vol. 324, p. 14.

    Article  CAS  Google Scholar 

  48. Zavelev, D.E., Zhidomirov, G.M., and Tsodikov, M.V., Kinet. Catal. 2018, vol. 59, no. 4, p. 405.

    Article  CAS  Google Scholar 

  49. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, no. 18, p. 3865.

    Article  CAS  PubMed  Google Scholar 

  50. Stevens, W.J., Basch, H., and Krauss, M., J. Chem. Phys., 1984, vol. 81, no. 12, p. 6026.

    Article  Google Scholar 

  51. Stevens, W.J., Krauss, M., Basch, H., and Jasien, P.G., Can. J. Chem., 1992, vol. 70, p. 612.

    Article  CAS  Google Scholar 

  52. Laikov, D.N., Chem. Phys. Lett., 1997, vol. 281, p. 151.

    Article  CAS  Google Scholar 

  53. Laikov, D.N. and Ustynyuk, Yu.A., Russ. Chem. Bull., 2005, vol. 54, no. 3, p. 820.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The computational resources of Joint Supercomputer Center of the Russian Academy of Sciences were used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Zavelev.

Ethics declarations

This work was carried out within the State Program of TIPS RAS.

Additional information

Translated by L. Smolina

Abbreviations: TGs, triglycerides; DFT, density functional theory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavelev, D.E., Zhidomirov, G.M. & Tsodikov, M.V. Theoretical Study of Deoxygenation of Esters on Small Pt–Sn Intermetallic Clusters. Kinet Catal 61, 1–39 (2020). https://doi.org/10.1134/S0023158420010139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420010139

Keywords:

Navigation