Skip to main content
Log in

Effect of the Surface Properties of γ-Al2O3 on the Conversion of Methanol into Dimethyl Ether According to in situ IR-Spectroscopic Data

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The samples of alumina of different origin exhibit different activity in the reaction of methanol dehydration to dimethyl ether (DME). To elucidate reasons for differences in their activity, a comparative study of the structural (XRD analysis, specific surface area, and porosity) and surface (Brønsted and Lewis acidity and hydroxyl coverage) properties of alumina samples was carried out. The presence of formates, aldehyde complexes, and bridging and terminal methoxy groups in different ratios on the surface of aluminum oxide samples under the reaction conditions of methanol conversion was detected using in situ IR spectroscopy. The reactivity of the detected surface compounds was compared for all of the samples. It was found that the activity of the samples in the formation of DME correlated with the rate of conversion of bridging methoxy groups. In turn, the rate of conversion of the bridging methoxy groups was determined by the acidity of bridging hydroxyl groups. An increase in acidity led to an increase in the bond strength of the methoxy group with the surface and a decrease in the rate of its conversion into DME. Linear methoxy groups underwent oxidative conversion into formate and aldehyde surface complexes. The nature of the oxidizing ability of an alumina surface is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Vishwanathan, M., Roh, H.-S., and Kim, J.-N., Catal. Lett., 2004, vol. 96, p. 23.

    Article  CAS  Google Scholar 

  2. Tleimat-Manzalji, R., Bianchi, D., and Pajonk, G.M., React. Kinet. Catal. Lett., 1993, vol. 51, p. 29.

    Article  CAS  Google Scholar 

  3. Bianchi, D., Chafik, T., Khalfallah, M., and Teichner, S.J., Appl. Catal., A, 1995, vol. 123, p. 89.

  4. Sambeth, J.E., Juan, A., and Gambaro, L., J. Mol. Catal. A: Chem., 1997, vol. 118, p. 283.

    Article  CAS  Google Scholar 

  5. Sambeth, J.E., Centeno, M.A., and Paul, A., J. Mol. Catal. A: Chem., 2000, vol. 161, p. 89.

    Article  CAS  Google Scholar 

  6. Bakhtyari, A. and Rahimpour, M.R., Methanol. Science and Engineering. Ch. 10. Methanol to Dimethyl Ether, Amsterdam: Elsevier, 2018, p. 281.

  7. Krylov, O.V. and Matyshak, V.A., Promezhutochnye soedineniya v geterogennom katalize (Intermediate Compounds in Heterogeneous Catalysis), Moscow: Nauka, 1996.

  8. Matyshak, V.A., Khomenko, T.I., Lin, G.I., Zavalishin, I.N., and Rozovskii, A.Ya., Kinet. Catal., 1999, vol. 40, p. 269.

    CAS  Google Scholar 

  9. Neophytides, S.G., Marchi, A.J., and Froment, G.F., Appl. Catal., A, 1992, vol. 86, p. 45.

  10. Martin, K.A. and Zabransky, R.F., Appl. Spectrosc., 1991, vol. 45, p. 68.

    Article  CAS  Google Scholar 

  11. Davydov, A.A., IK-spektroskopiya v khimii poverkhnosti okislov (Infrared Spectroscopy in Chemistry of Oxides), Novosibirsk: Nauka, 1984.

  12. Daturi, M., Binet, C., Lavalley, J-C., Galtayries, A., and Spoken, R., Phys. Chem. Chem. Phys., 1999, vol. 1, p. 5717.

    Article  CAS  Google Scholar 

  13. Siokou, A. and Nix, R.M., J. Phys. Chem. B, 1999, vol. 103, p. 6984.

    Article  CAS  Google Scholar 

  14. Novakova, J., Kubelkova, L., and Dolysek, Z., J. Catal., 1987, vol. 108, p. 208.

    Article  CAS  Google Scholar 

  15. Lamotte, J., Moravek, V., Bensitel, M., and Lavalley, J.C., React. Kinet. Catal. Lett., 1988, vol. 36, p. 113.

    Article  CAS  Google Scholar 

  16. Knop-Gericke, A., Havecker, M., Schedel-Niedrig, Th., and Schlogl, R., Top. Catal., 2000, vol. 10, p. 187.

    Article  CAS  Google Scholar 

  17. Carley, A.P., Owens, A.W., Rajumon, M.K., Roberts, M.W., and Jackson, S.D., Catal. Lett., 1996, vol. 37, p. 79.

    Article  CAS  Google Scholar 

  18. Ueno, A., Onishi, T., and Tamaru, K., Trans. Faraday Soc., 1971, vol. 67, p. 3585.

    Article  CAS  Google Scholar 

  19. Matyshak, V.A., Berezina, L.A., Sil’chenkova, O.N., and Tret’yakov, V.F., Lin, G.I., Rozovskii A.Ya., Kinet. Catal., 2009, vol. 50, p. 111.

    Article  CAS  Google Scholar 

  20. Pushkar, Y.N., Parenago, O.O., Fionov, A.V., and Lunina, E.V., Colloids Surf., A, 1999, vol. 158, p. 179.

    Article  CAS  Google Scholar 

  21. Paukshtis, E.A., Infrakrasnaya spektroskopiya v geterogennom kislotno-osnovnom katalize (Infrared Spectroscopy in Heterogeneous Acid–Base Catalysis), Novosibirsk: Nauka, 1992.

  22. Kipnis, M.A., Samokhin, P.V., Bondarenko, G.N., Volnina, E.A., Kostina, Yu.V., Yashina, O.V., Barabanov, V.G., and Kornilov, V.V., Russ. J. Phys. Chem. A, 2011, vol. 85, no. 8, p. 1322.

    Article  CAS  Google Scholar 

  23. Matyshak, V.A. and Krylov, O.V., Catal. Today, 1996, vol. 25, p. 1.

    Article  Google Scholar 

  24. Malakhova, I.V., Ermolaev, V.K., and Danilova, I.G., Kinet. Catal., 2003, vol. 44, p. 536.

    Article  CAS  Google Scholar 

  25. Alekseev, A.V., Lopatin, Yu.N., and Tsyganenko, A.A., React. Kinet. Catal. Lett., 1974, vol. 1, p. 443.

    Article  CAS  Google Scholar 

  26. Busca, G., Rossi, P.F., and Lorenzelli, V., J. Phys. Chem., 1985, vol.89, p. 5433.

    Article  CAS  Google Scholar 

  27. DeVito, D.A., Giardoni, F., and Kiwi-Minsker, L., J. Mol. Srtuct., 1999, vol. 469, p. 7.

    Article  CAS  Google Scholar 

  28. Berezina, L.A., Matyshak, V.A., Korchak, V.N., Burdeinaya, T.N., Tret’yakov, V.F., Lin, G.I., and Rozovskii, A.Ya., Kinet. Catal., 2009, vol. 50, p. 775.

    Article  CAS  Google Scholar 

  29. Matsushima, T. and White, J., J. Catal., 1976, vol. 44, p. 183.

    Article  CAS  Google Scholar 

  30. Herd, A.C., Onishi, T., and Tamaru, K., Bull. Chem. Soc. Jpn., 1974, vol. 47, p. 575.

    Article  CAS  Google Scholar 

  31. Yamashita, K., Naito, S., and Tamaru, K., J. Catal., 1985, vol. 94, p. 353.

    Article  CAS  Google Scholar 

  32. Vishnetskaya, M.V., Taktarova, G.N., and Topchieva, K.V., Kinet. Katal., 1985, vol. 26, p. 1271.

    CAS  Google Scholar 

  33. Vishnetskaya, M.V., Taktarova, G.N., and Topchieva, K.V., Kinet. Katal., 1985, vol. 26, p. 1272.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Federal Agency for Scientific Organizations (FANO) of Russia in accordance with a state contract (project no. V.46.13, 0082-2014-0007, state registration no. AAAA-A18-118020890105-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Matyshak.

Additional information

Translated by V. Makhlyarchuk

Abbreviations: DME, dimethyl ether; MF, methyl formate; TPD, thermally programmed desorption; EPR, electron paramagnetic resonance; BAS, Brønsted acid site; LAS, Lewis acid site.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matyshak, V.A., Sadykov, V.A., Silchenkova, O.N. et al. Effect of the Surface Properties of γ-Al2O3 on the Conversion of Methanol into Dimethyl Ether According to in situ IR-Spectroscopic Data. Kinet Catal 61, 137–144 (2020). https://doi.org/10.1134/S0023158420010061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420010061

Keywords:

Navigation