Skip to main content
Log in

4-Chloro-2,6-Pyridinedicarboxylic Acid Functionalized Mesoporous Silica Nanocomposites for the Synthesis of Sinapaldehyde

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

4-Chloro-2,6-pyridinedicarboxylic acid (CPDA) functionalized mesoporous silica SBA-15 nanocomposites (SBA/5CPDA) were synthesized and characterized for the Knoevenagel condensation of syringaldehyde and acetaldehyde to synthesize sinapaldehyde in the liquid phase. The physicochemical characterization of the SBA/CPDA nanocomposites showed the decrease in the surface properties (surface area, pore size, pore volume) compared to SBA-15 confirming the complete functionalization of CPDA inside the mesopores of SBA-15 materials. The catalytic activity results displayed high activity (~90%) and selectivity (90–95%) of the desired product (sinapaldehyde) under environmental friendly conditions. All the reaction parameters were optimized to accomplish the maximum conversion of the selective products. Finally, the mechanism of the formation of the products was proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Margolese, D., Melero, J., Christiansen, S., Chmelka, B., and Stucky, G., Chem. Mater., 2000, vol. 12, p. 2448.

    Article  CAS  Google Scholar 

  2. Wang, X., Lin, K.S., Chan, J.C., and Cheng, S., J. Phys. Chem. B, 2005, vol. 109, p. 1763.

    Article  CAS  Google Scholar 

  3. Wu, S., Han, Y., Zou, Y.C., Song, J.W., Zhao, L., Di, Y., Liu, S.Z., and Xiao, F.S., Chem. Mater., 2004, vol. 16, p. 486.

    Article  CAS  Google Scholar 

  4. Sharma, A., Wilson, G.R., and Dubey, A., New J. Chem., 2016, vol. 40, p. 764.

    Article  CAS  Google Scholar 

  5. Rostamnia, S., Doustkhah, E., Estakhri, S., and Karimi, Z., Phys. E(Amsterdam,Neth.), 2016, vol. 76, p. 146.

    Google Scholar 

  6. Carraher, C.E., Slawek, P.P., Roner, M.R., Moric-Johnson, A., Miller, L.C., Einkauf, J.D., and Russell, F., J. Inorg. Organomet. Polym. Mater., 2016, vol. 26, p. 1338.

    Article  CAS  Google Scholar 

  7. Yusof, N., Mehamod, F., Kadir, M., and Suah, F., IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 440, p. 012 005.

  8. Bhardwaj, S.K., Bhardwaj, N., Mohanta, G.C., Kumar, P., Sharma, A.L., Kim, K.-H., and Deep, A., ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 26 124.

    Article  Google Scholar 

  9. Batalha, I.L., Ke, P., Tejeda-Montes, E., Uddin, S., van der, Walle, C.F., and Christie, G., Int. J. Pharm., 201, vol. 7526, p. 332.

  10. Lin, W. and Long, J.R., Inorg. Chem., 2016, vol. 55, p. 7189.

    Article  CAS  Google Scholar 

  11. Ranjbar, M., Taher, M.A., and Sam, A., J. Mater. Sci. Mater. Electron., 2016, vol. 27, p. 1449.

    Article  CAS  Google Scholar 

  12. Gu, X., Lv, W., Hui, Y., Liu, X., Wu, M., Yang, Y., and She, S., Zeitschrift für anorganischeund allgemeine Chemie, 2019, vol. 645, p. 663.

  13. Macauley, E., and Hong, A., J. Hazard. Mater., 1995, vol. 40, p. 257.

    Article  CAS  Google Scholar 

  14. Gang, D., Banerji, S.K., and Clevenger, T.E., Practice Periodical of Hazardous, Toxic, Radioactive Waste Management, 2000, vol. 4, p. 105.

    Article  CAS  Google Scholar 

  15. Cha, D.K., Song, J.S., Sarr, D., and Kim, B., Water Environ. Res., 1996, vol. 68, p. 575.

    Article  CAS  Google Scholar 

  16. Paulsson, M. and Parkås, J., BioResources, 2012, vol. 7, p. 5995.

    Article  Google Scholar 

  17. Susanne, M.M.-J., Gaston, T.R.P.J., and Achille, P.G., Google Patents, 1960.

  18. Schwab, W., Davidovich-Rikanati, R., and Lewinsohn, E., Plant J., 2008, vol. 54, p. 712.

    Article  CAS  Google Scholar 

  19. Cheng, S.-S., Liu, J.-Y., Chang, E.-H., and Chang, S.-T., Bioresour. Technol., 2008, vol. 99, p. 5145.

    Article  CAS  Google Scholar 

  20. Battistuzzi, G., Cacchi, S., and Fabrizi, G., Org. Lett., 2003, vol. 5, p. 777.

    Article  CAS  Google Scholar 

  21. Kaleta, Z., Tárkányi, G., Gömöry, Á., Kálmán, F., Nagy, T., and Soós, T., Org. Lett., 2006, vol. 8, p. 1093.

    Article  CAS  Google Scholar 

  22. Knoevenagel, E., Ber. Dtsch. Chem. Ges., 1898, vol. 31, p. 2596.

    Article  CAS  Google Scholar 

  23. Hayashi, Y., Toyoshima, M., Gotoh, H., and Ishikawa, H., Org. Lett., 2008, vol. 11, p. 45.

    Article  Google Scholar 

  24. Maga, J.A., Food Rev. Int., 1987, vol. 3, p. 139.

    CAS  Google Scholar 

  25. Brill, E.M., Abrahams, S., Hayes, C.M., Jenkins, C.L., and Watson, J.M., Plant. Mol. Biol., 1999, vol. 41, p. 279.

    Article  CAS  Google Scholar 

  26. Pan, H., Zhou, R., Louie, G.V., Mühlemann, J.K., Bomati, E.K., Bowman, M.E., Dudareva, N., Dixon, R.A., Noel, J.P., and Wang, X., Plant. Cell, 2014, vol. 26, p. 3709.

    Article  CAS  Google Scholar 

  27. Dubey, A., Sachdev, D., and Srivasatava, N.M., Adv. Mater. Lett., 2013, vol. 4, p. 39.

    Article  CAS  Google Scholar 

  28. Galarneau, A., Cambon, H.L.N., Renzo, F.D., and Ryoo, R.N., J. Chem., 2000, vol. 27, p. 73.

    Google Scholar 

  29. Kruk, M., Jaroniec, M., Ko, C.H., and Ryoo, R., Chem. Mater., 2000, vol. 12, p. 1961.

    Article  CAS  Google Scholar 

  30. Sachdev, D., Wilson, G.R., Srivastava, N.M., and Dubey, A., Catal. Commun., 2014, vol. 51, p. 90.

    Article  CAS  Google Scholar 

  31. Yang, C.M., Liu, P.H., Ho, Y.F., Chiu, C.Y., and Chao, K.J., Chem. Mater., 2003, vol. 15, p. 275.

    Article  CAS  Google Scholar 

  32. Katiyar, A., Yadav, S., Smirniotis, P.G., and Pinto, N.G., J. Chromatogr. A, 2006, vol. 1122, p. 13.

    Article  CAS  Google Scholar 

  33. Konradova, D., Kozubikova, H., Doležal, K., and Pospíšil J., Eur. J. Org. Chem., 2017, p. 5204.

  34. Nakamura, Y., Nakatsubo, F., and Higuchi, T., Wood Res., 1974, vol. 56, p. 1.

    Google Scholar 

  35. Verma, S., and Dubey, A., J. Nanopart. Res., 2017, vol. 19, p. 407.

    Article  Google Scholar 

  36. Tichit, D., Lutic, D., Coq, B., Durand, R., and Teissier, R., J. Catal., 2003, vol. 219, p. 167.

    Article  CAS  Google Scholar 

  37. Tichit, D., Bennani, M.N., Figueras, F., Tessier, R., and Kervennal, J., Appl. Clay Sci., 1998, vol. 13, p. 401.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors thank the institute for necessary help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dubey.

Additional information

Abbreviations: PDA, pyridine-2,6-dicarboxylic acid; CPDA, 4‑chloro-2,6-pyridinedicarboxylic acid; SBA/CPDA, CPDA functionalized mesoprous silica SBA-15 nanocomposites; PXRD, powder X-ray diffraction; SEM, scanning electron microscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Dubey, A. 4-Chloro-2,6-Pyridinedicarboxylic Acid Functionalized Mesoporous Silica Nanocomposites for the Synthesis of Sinapaldehyde. Kinet Catal 61, 112–118 (2020). https://doi.org/10.1134/S0023158420010103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420010103

Keywords:

Navigation