Skip to main content
Log in

Differential Pulse Voltammetric Determination of Anticancer Drug Regorafenib at a Carbon Paste Electrode: Electrochemical Study and Density Functional Theory Computations

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical properties of regorafenib (REG) were studied in 0.1 M Britton−Robinson buffer-methanol solutions (3 : 2, v/v) with pH between 3 and 8 at carbon paste electrode by cyclic and differential pulse voltammetry. The results exhibited irreversible anodic peak at about 0.90 V vs. Ag/AgCl, NaCl (3 M). The anodic peak was found to be diffusion–adsorption controlled. Mechanism of REG electrochemical reaction was studied by performing density functional theory computations and mass spectrometric analysis. A validated differential pulse voltammetry (DPV) technique for REG determination was performed. The calibration curve of REG on carbon paste electrode was linear in the concentration range of 0.5–13 μg/mL and limit of detection was 0.10 µg/mL. The recommended DPV method was used to detect REG in spiked plasma and urine specimens and average recoveries were 94%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Majithia, N. and Grothey, A., Expert Opin. Pharmacother., 2016, vol. 17, no. 1, p. 137.

    Article  CAS  Google Scholar 

  2. Strumberg, D., Scheulen, M.E., Schultheis, B., Richly, H., Frost, A., Büchert, M., and Mross, K., Br. J. Cancer, 2012, vol. 106, no. 11, p. 1722.

    Article  CAS  Google Scholar 

  3. Thangaraju, P., Singh, H., and Chakrabarti, A., Indian J. Cancer, 2015, vol. 52, no. 3, p. 257.

    Article  CAS  Google Scholar 

  4. Prenen, H., Vecchione. L., and Van Cutsem, E., Target Oncol., 2013, vol. 8, no. 2, p. 83.

    Article  Google Scholar 

  5. Rey, J.B., Launay-Vacher, V., and Tournigand, C., Target Oncol., 2015, vol. 10, no. 2, p. 199.

    Article  Google Scholar 

  6. Zopf. D., Fichtner, I., Bhargava, A., Steinke, W., Thierauch, K.H., Diefenbach, K., Wilhelm, S., Hafner, F.T., and Gerisch, M., Cancer Med., 2016, vol. 5, no. 11, p. 3176.

    Article  CAS  Google Scholar 

  7. Krishnamoorthy, S.K., Relias, V., Sebastian, S., Jayaraman, V., and Saif, M.W., Ther. Adv. Gastroenterol., 2015, vol. 8, no. 5, p. 285.

    Article  CAS  Google Scholar 

  8. Fujita, K., Miura, M., and Shibata, H., Biomed. Chromatogr., 2016, vol. 30, no. 10, p. 1611.

    Article  CAS  Google Scholar 

  9. Zhang, W.J., Li, Y., Wie, M.N., Chen, Y., Qiu, J.G., Jiang, Q.W., Yang, Y., Zheng, D.W., Qin, W.M., Huang, J.R., Wang, K., Zhang, W.J., Wang, Y.J., Yang, D.H., Chen, Z.S., and Shi, Z., Cancer Lett., 2017, vol. 386, no. 3, p. 100.

    Article  CAS  Google Scholar 

  10. Romero, J.E., Chiva, J.A., Peris-Vicente, J., and Ochoa-Aranda, E., Bioanalysis, 2017, vol. 9, no. 9, p. 799.

    Article  CAS  Google Scholar 

  11. Jayaprakash, R. and Natesan, S.K., J. Pharm. Chem., 2017, vol. 4, no. 1, p. 5.

    Article  CAS  Google Scholar 

  12. Fei, Z., Yang, M., Shen, Y., Wang, Y., Qiu, F., and Lou, J., Lat. Am. J. Pharm., 2016, vol. 35, no. 6, p. 1415.

    CAS  Google Scholar 

  13. Ji, W., Zhang, Q., and Hu, L., Lat. Am. J. Pharm., 2014, vol. 33, no. 4, p. 607.

    CAS  Google Scholar 

  14. Van Dyk, M., Miners, J.O., Kichenadasse, G., McKinnon, R.A., and Rowland, A., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2016, vols. 1033–1034, p. 17.

    Article  Google Scholar 

  15. Van Erp, N.P., de Wit, D., Guchelaar, H.J., Gelderblom, H., Hessing, T.J., and Den Hartigh, J., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2013, vol. 937, p. 33.

    Article  CAS  Google Scholar 

  16. Hafner, F.T., Werner, D., and Kaiser, M., Bioanalysis, 2014, vol. 6, no. 14, p. 1923.

    Article  CAS  Google Scholar 

  17. Luethi, D., Durmus, S., Schinkel, A.H., Schellens, J.H., Beijnen, J.H., and Sparidans, R.W., Biomed. Chromatogr., 2014, vol. 28, no. 10, p. 1366.

    Article  CAS  Google Scholar 

  18. Allard, M., Khoudour, N., Rousseau, B., Joly, C., Costentin, C., Blanchet, B., Tournigand, C., and Hulin, A., J. Pharm. Biomed. Anal., 2017, vol. 142, p. 42.

    Article  CAS  Google Scholar 

  19. Hu, X., Sun, M., Li, Y., and Tang, G., Colloids Surf., B, 2017, vol. 153, no. 5, p. 61.

    Article  CAS  Google Scholar 

  20. Kauffmann, J.M., Patris, S., Vandeput, M., Sarakbi, A., and Sakira, A.K., Curr. Drug Delivery, 2016, vol. 13, no. 3, p. 371.

    Article  CAS  Google Scholar 

  21. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G, Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Jr., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision B.01, Wallingford: Gaussian, 2009.

    Google Scholar 

  22. Chai, J.D. and Head-Gordon, M., Phys. Chem. Chem. Phys., 2008, vol. 10, no. 44, p. 6615.

    Article  CAS  Google Scholar 

  23. Barone, V., Cossi, M., and Tomasi, J., J. Chem. Phys., 1997, vol. 107, no. 8, p. 3210.

    Article  CAS  Google Scholar 

  24. Cossi, M., Rega, N., Scalmani, G., and Barone, V., J. Comp. Chem., 2003, vol. 24, no. 6, p. 669.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We wish to thank Bayer for supplying regorafenib and TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure) for the calculations reported in the theoretical part of this paper. We also thank to Uğur BOZKAYA for using Gaussian 09 program package.

Funding

This work was supported by Scientific Research Project Coordination Unit of Istanbul University, Project numbers: PYP-17194 and BEK-2017-25714.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeynep Aydoğmuş.

Ethics declarations

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeynep Aydoğmuş, Aslan, S.S., Yildiz, G. et al. Differential Pulse Voltammetric Determination of Anticancer Drug Regorafenib at a Carbon Paste Electrode: Electrochemical Study and Density Functional Theory Computations. J Anal Chem 75, 691–700 (2020). https://doi.org/10.1134/S1061934820050032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820050032

Keywords:

Navigation