Skip to main content
Log in

Present-Day Possibilities of High-Resolution Continuous-Source Electrothermal Atomic Absorption Spectrometry

  • REVIEWS
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The review covers modern directions of the implementation of high-resolution continuous-source electrothermal atomic absorption spectrometry (HR CS ETAAS) for quantitative analysis. Approaches to the direct analysis of solid samples of various compositions, including determination using aqueous reference solutions, analysis of suspensions and sorbates after sorption separation, use of various modifiers, and optimization of the program of heating graphite furnace are systematized. Restrictions of HR CS ETAAS in the determination of poorly volatile elements are noted, methods for increasing the rate of their atomization in a graphite furnace are described. The potentials of HR CS ETAAS for the simultaneous and consecutive monitoring of atomic lines are investigated. The difference between the simultaneous multielement determination and consecutive determination in one aliquot portion is noted. Restrictions of simultaneous multielement analysis by HR CS ETAAS in the number of elements, their thermochemical properties, and intensities of corresponding absorption lines are described. Possibilities of molecular absorption spectrometry for the determination of analytes whose atomic absorption lines are outside the continuous spectrum range of 190–900 nm are discussed. A promising approach to the determination of sulfur, phosphorus, halogens, and aluminum by absorption lines of diatomic molecules is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Harnly, J.M., Fresenius’ J. Anal. Chem., 1996, vol. 355, p. 501. https://doi.org/10.1007/s0021663550501

    Article  CAS  Google Scholar 

  2. Welz, B., Becker-Ross, H., Florek, S., Heitmann, U., and Vale, M.G.R., J. Braz. Chem. Soc., 2003, vol. 14, p. 220. https://doi.org/10.1590/S0103-50532003000200007

    Article  CAS  Google Scholar 

  3. Pupyshev, A.A., Analitika Kontrol’, 2008, vol. 12, nos. 3–4, p. 64.

    Google Scholar 

  4. Resano, M., Flórez, M.R., and García-Ruiz, E., Spectrochim. Acta, Part B, 2013, vol. 88, p. 85. https://doi.org/10.1016/j.sab.2013.06.004

    Article  CAS  Google Scholar 

  5. Katskov, D.A., Analitika Kontrol’, 2018, vol. 22, no. 4, p. 350. https://doi.org/10.15826/analitika.2018.22.4.001

    Article  Google Scholar 

  6. Welz, B., Vale, M.G.R., Borges, D.L.G., and Heitmann, U., Anal. Bioanal. Chem., 2007, vol. 389, p. 2085.

    Article  CAS  Google Scholar 

  7. Araujo, R.G.O., Welz, B., Vignola, F., and Becker-Ross, H., Talanta, 2009, vol. 80, no. 2, p. 846. https://doi.org/10.1016/j.talanta.2009.08.004

    Article  CAS  PubMed  Google Scholar 

  8. Schneider, M., Cadorim, H.R., Welz, B., Carasek, E., and Feldmann, J., Talanta, 2018, vol. 188, p. 722. https://doi.org/10.1016/j.talanta.2018.06.052

    Article  CAS  PubMed  Google Scholar 

  9. Gunduz, S. and Akman, S., Food Chem., 2013, vol. 141, no. 3, p. 2634. https://doi.org/10.1016/j.foodchem.2013.05.020

    Article  CAS  PubMed  Google Scholar 

  10. Kelestemur, S. and Özcan, M., Microchem. J., 2015, vol. 118, p. 55. https://doi.org/10.1016/j.microc.2014.08.005

    Article  CAS  Google Scholar 

  11. Resano, M., García Ruiz, M.E., Aramendia, M., and Belarra, M.A., J. Anal. At. Spectrom., 2019, vol. 34, p. 59. https://doi.org/10.1039/c8ja00256h

    Article  CAS  Google Scholar 

  12. Laczai, N., Kovács, L., Péter, A, and Bencs, L., Spectrochim. Acta, Part B, 2016, vol. 117, p. 8. https://doi.org/10.1016/j.sab.2015.12.008

    Article  CAS  Google Scholar 

  13. Babos, D.V., Barros, A.I., Ferreira, E.C., and Neto, J.A.G., Spectrochim. Acta, Part B, 2017, vol. 130, p. 39. https://doi.org/10.1016/j.sab.2017.02.005

    Article  CAS  Google Scholar 

  14. Dobrowolski, R., Mróz, A., Dąbrowska, M., and Olszański, P., Spectrochim. Acta, Part B, 2017, vol. 132, p. 13. https://doi.org/10.1016/j.sab.2017.03.011

    Article  CAS  Google Scholar 

  15. Dravecz, G., Laczai, N., Hajdara, I., and Bencs, L., Spectrochim. Acta, Part B, 2016, vol. 126, p. 1. https://doi.org/10.1016/j.sab.2016.10.00

    Article  CAS  Google Scholar 

  16. Stanisz, E. and Krawczyk-Coda, M., Microchem. J., 2017, vol. 32, p. 136. https://doi.org/10.1016/j.microc.2017.01.018

    Article  CAS  Google Scholar 

  17. Atilgan, S., Akman, S., Baysal, A., Bakircioglu, Y., Szigeti, T., Óvári, M., and Záray, G., Spectrochim. Acta, Part B, 2012, vol. 70, p. 33. https://doi.org/10.1016/j.sab.2012.04.008

    Article  CAS  Google Scholar 

  18. López-García, I., I., Muñoz-Sandoval, M.J., and Hernández-Córdoba, M., Talanta, 2017, vol. 172, p. 8. https://doi.org/10.1016/j.talanta.2017.05.017

    Article  CAS  PubMed  Google Scholar 

  19. López-García, I., Vicente-Martínez, Y., Hernández-Córdoba, M., Spectrochim. Acta, Part B, 2014, vol. 101, p. 93. https://doi.org/10.1016/j.sab.2014.07.017

    Article  CAS  Google Scholar 

  20. Eskina, V.V., Dalnova, O.A., Filatova, D.G., Baranovskaya, V.B., and Karpov, Y.A., Talanta, 2016, vol. 159, p. 103. https://doi.org/10.1016/j.talanta.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  21. Barreto, I.S., Andrade, S.I.E., Cunha, F.A.S., Lima, M.B., Araujo, M.C.U., and Almeida, L.F., Talanta, 2018, vol. 178, p. 384. https://doi.org/10.1016/j.talanta.2017.09.063

    Article  CAS  PubMed  Google Scholar 

  22. Mihucz, V.G., Enesei, D.L., Veszely, Á., Bencs, L., Pap-Balázs, T., Óvári, M., Streli, C., and Záray, G., Microchem. J., 2017, vol. 135, p. 105. https://doi.org/10.1016/j.microc.2017.08.006

    Article  CAS  Google Scholar 

  23. Cárdenas Valdivia, A., López Guerrero, M.M., Vereda Alonso, E.I., Cano Pavón, J.M., and García de Torres, A. Microchem. J., 2018, vol. 138, p. 109. https://doi.org/10.1016/j.microc.2018.01.007

    Article  CAS  Google Scholar 

  24. Gil, R.A., Pacheco, P.H., Cerutti, S., and Martinez, L.D., Anal. Chim. Acta, 2015, vol. 875, p. 7. https://doi.org/10.1016/j.microc.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  25. Husakova, L., Urbanova, I., Safrankova, M., and Sidova, T., Talanta, 2017, vol. 175, p. 93. https://doi.org/10.1016/j.talanta.2017.07.031

    Article  CAS  PubMed  Google Scholar 

  26. Dravecz, G., Bencs, L., Beke, D., and Gali, A., Talanta, 2016, vol. 147, p. 271. https://doi.org/10.1016/j.talanta.2015.09.067

    Article  CAS  PubMed  Google Scholar 

  27. Krawczyk, M., J. Pharm. Biomed. Anal., 2014, vol. 88, p. 377. https://doi.org/10.1016/j.jpba.2013.09.016

    Article  CAS  PubMed  Google Scholar 

  28. Filatova, D.G., Eskina, V.V., Baranovskaya, V.B., Vladimirova, S.A., Gaskov, A.M., Rumyantseva, M.N., and Karpov, Y.A., Spectrochim. Acta, Part B, 2018, vol. 140, p. 1. https://doi.org/10.1016/j.sab.2017.12.003

    Article  CAS  Google Scholar 

  29. Krawczyk, M. and Jeszka-Skowron, M., Microchem. J., 2016, vol. 126, p. 296. https://doi.org/10.1016/j.microc.2015.12.027

    Article  CAS  Google Scholar 

  30. Colares, L., Pereira, É.R., Merib, J., Silva, J.C., Silva, J.M., Welz, B., and Borges, D.L.G., J. Anal. At. Spectrom., 2015, vol. 30, no. 2, p. 381. https://doi.org/10.1039/C4JA00391H

    Article  CAS  Google Scholar 

  31. Gagné, F., Turcotte, P., and Gagnon, C., Anal. Bioanal. Chem., 2012, vol. 404, p. 2067. https://doi.org/10.1007/s00216-012-6258-2

    Article  CAS  PubMed  Google Scholar 

  32. Brandt, A. and Leopold, K., Spectrochim. Acta, Part B, 2016, vol. 150, p. 26. https://doi.org/10.1016/j.sab.2018.10.004

    Article  CAS  Google Scholar 

  33. Leopold, K., Brandt, A., and Tarren, H., J. Anal. At. Spectrom., 2017, vol. 32, p. 723. https://doi.org/10.1039/C7JA00019G

    Article  CAS  Google Scholar 

  34. Resano, M., Rello, L., Flórez, M., and Belarra, M.A., Spectrochim. Acta, Part B, 2011, vol. 66, p. 321. https://doi.org/10.1016/j.sab.2011.03.008

    Article  CAS  Google Scholar 

  35. Resano, M., Flórez, M.D., Queralt, I., and Marguí, E., Spectrochim. Acta, Part B, 2015, vol. 105, p. 38. https://doi.org/10.1016/j.sab.2014.09.013

    Article  CAS  Google Scholar 

  36. Ozbek, N. and Ozcan, M., Talanta, 2016, vol. 148, p. 17. https://doi.org/10.1016/j.talanta.2015.10.041

    Article  CAS  PubMed  Google Scholar 

  37. Rello, L., Lapena, A.C., Aramendia, M., Belarra, M.A., and Resano, M., Spectrochim. Acta, Part B, 2013, vol. 81, p. 11. https://doi.org/10.1016/j.sab.2012.12.001

    Article  CAS  Google Scholar 

  38. Cárdenas Valdivia, A., Vereda Alonso, E., López Guerrero, M.M., Gonzalez-Rodriguez, J., Cano Pavón, J.M., and García de Torres, A., Talanta, 2018, vol. 179, p. 1. https://doi.org/10.1016/j.talanta.2017.10.033

    Article  CAS  PubMed  Google Scholar 

  39. Ozbek, N., Microchem. J., 2019, vol. 145, p. 1066. https://doi.org/10.1016/j.microc.2018.12.002

    Article  CAS  Google Scholar 

  40. Boschetti, W., Orlando, M., Dullius, M., Dessuy, M.B., Vale, M.G.R., Welz, B., and Andrade, J.B., J. Anal. At. Spectrom., 2016, vol. 31, no. 6, p. 1269. https://doi.org/10.1039/C6JA00031B

    Article  CAS  Google Scholar 

  41. Babos, D.V., Bechlin, M.A., Barros, A., Ferreira, I.E.C., and Oliveira, S.R., Talanta, 2016, vol. 152, p. 457. https://doi.org/10.1016/j.talanta.2016.02.046

    Article  CAS  PubMed  Google Scholar 

  42. Welz, B., Becker-Ross, H., Florek, S., and Heitmann, U., High-Resolution Continuum Source Atomic Absorption Spectrometry: The Better Way to do Atomic Absorption Spectrometry, Weinheim: Wiley, 2005.

    Book  Google Scholar 

  43. Welz, B., Lepri, F.G., Araujo, R.G.O., Ferreira, S.L.C., Huang, M.D., Okruss, M., and Becker-Ross, H., Anal. Chim. Acta, 2009, vol. 647, no. 2, p. 137. https://doi.org/10.1016/j.aca.2009.06.029

    Article  CAS  PubMed  Google Scholar 

  44. Evah Tjabadi, M. and Mketo, N., TrAC,Trends Anal. Chem., 2019, vol. 118, p. 207. https://doi.org/10.1016/j.trac.2019.05.033

    Article  CAS  Google Scholar 

  45. Huang, M.D., Becker-Ross, H., Florek, S., Heitmann, U., Okruss, M., and Welz, B., Spectrochim. Acta, Part B, 2009, vol. 64, p. 697. https://doi.org/10.1016/j.sab.2009.06.010

    Article  CAS  Google Scholar 

  46. Ozbek, N. and Akman, S., Food Chem., 2013, vol. 138, no. 1, p. 650. https://doi.org/10.1016/j.foodchem.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  47. Flórez, M.R. and Resano, M., Spectrochim. Acta, Part B, 2013, vol. 88, p. 32. https://doi.org/10.1016/j.sab.2013.07.013

    Article  CAS  Google Scholar 

  48. Huang, M.D., Becker-Ross, H., Florek, S., Heitmann, U., and Okruss, M., Spectrochim. Acta, Part B, 2006, vol. 61, p. 181. https://doi.org/10.1016/j.sab.2006.01.001

    Article  CAS  Google Scholar 

  49. Gunduz, S. and Akman, S., Food Chem., 2015, vol. 172, p. 213. https://doi.org/10.1016/j.foodchem.2014.09.031

    Article  CAS  PubMed  Google Scholar 

  50. Huang, M.D., Becker-Ross, H., Florek, S., Abad, C., and Okruss, M., Spectrochim. Acta, Part B, 2017, vol. 135, p. 15. https://doi.org/10.1016/j.sab.2017.06.012

    Article  CAS  Google Scholar 

  51. Aramendía, M., Flórez, M.R., Piette, M., Vanhaecke, F., and Resano, M., J. Anal. At. Spectrom., 2011, vol. 26, p. 1964. https://doi.org/10.1039/C1JA10183H

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project 17-03-01014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Filatova.

Additional information

Translated by E. Rykova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatova, D.G., Es’kina, V.V., Baranovskaya, V.B. et al. Present-Day Possibilities of High-Resolution Continuous-Source Electrothermal Atomic Absorption Spectrometry. J Anal Chem 75, 563–568 (2020). https://doi.org/10.1134/S1061934820050044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820050044

Keywords:

Navigation