Skip to main content
Log in

Two Chemometric Models for Cyclobenzaprine·HCl Determination in Presence of its Two Major Oxidative Degradation Products

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Two validated, accurate and selective chemometric models were developed to detect cyclobenzaprine·HCl (CZ) in the presence of its two major degradation products: dibenzocycloheptatrienone and anthraquinone. Additionally, a comparative study was conducted between two chemometric models, namely partial least squares regression (PLSR) and spectral residual augmented classical least squares (SRACLS) via handling UV spectra in the range of 210–340 nm. A 3 factor 4 level experimental design was applied to provide a training set of 16 mixtures. An independent test set consisting of 9 mixtures was established to confirm the prediction capacity of the developed models. The results ascertain the capability of developed multivariate calibration models to selectively determine CZ with high selectivity and accuracy (100.0 ± 0.7% and 100.0 ± 0.6% for PLSR and SRACLS, respectively). A statistical comparison between the obtained results and results from the official HPLC method was run, where no significant difference was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. The United States Pharmacopeia and the National Formulary, USP 34 NF 29, Rockwille: The United States Pharmacopeial Convention, 2011.

  2. Share, N.N., Neuropharmacology, 1978, vol. 17, no. 9, p. 721.

    Article  CAS  Google Scholar 

  3. Cotton, M.L. and Down, G.B., Anal. Profiles Drug Subst., 1988, vol. 17, p. 41.

    Article  CAS  Google Scholar 

  4. Liu, Y., Zhao, D., and Zhao, Z.Z., Anal. Methods, 2014, vol. 6, no. 7, p. 2320.

    Article  CAS  Google Scholar 

  5. Puopolo, P.R. and Flood, J.G., Clin. Chem., 1987, vol. 33, no. 6, p. 819.

    Article  CAS  Google Scholar 

  6. Constanzer, M., Chavez, C., and Matuszewski, B., J. Chromatogr B: Biomed. Sci. Appl., 1995, vol. 666, no. 1, p. 117

    Article  CAS  Google Scholar 

  7. Heinitz, M.L., Anal. Methods, 2014, vol. 6, p. 2320.

    Article  Google Scholar 

  8. Hucker, H.B. and Stauffer, S.C., J. Pharm. Pharm. Sci., 1976, vol. 65, no. 8, p. 1253.

    Article  CAS  Google Scholar 

  9. Bateh, R.P., J. Anal. Toxicol., 1987, vol. 11, no. 5, p. 235.

    Article  CAS  Google Scholar 

  10. Wong, E.C., Koenig, J., and Turk, J., J. Anal. Toxicol., 1995, vol. 19, no. 4, p. 218.

    Article  CAS  Google Scholar 

  11. Ramadan, N.K., Zaazaa, H.E., and Merey, H.A., J. AOAC Int., 2011, vol. 94, no. 6, p. 1807.

    Article  CAS  Google Scholar 

  12. Tasset, J.J., Schroeder, T.J., and Pesce, A.J., J. Anal. Toxicol., 1986, vol. 10, no. 6, p. 258.

    Article  CAS  Google Scholar 

  13. Brereton, R.G., Analyst, 1997, vol. 122, no. 12, p. 1521.

    Article  CAS  Google Scholar 

  14. Gasteiger, J., Handbook of Chemoinformatics, vol. 3, Weinheim: Wiley, 2003.

    Book  Google Scholar 

  15. Wold, A., Ruhe, H., Wold, W.J., and Dunn, I.I.I., J. Sci. Comput., 1984, vol. 5, no. 3, p. 735.

    Google Scholar 

  16. Gerlach, R.W., Kowalski, B.R., and Wold, H.O., Anal. Chim. Acta, 1979, vol. 112, no. 4, p. 417.

    Article  CAS  Google Scholar 

  17. Martens, H. and Naes, T., Multivariate Calibration, Chichester: Wiley, 1989.

    Google Scholar 

  18. Brereton, R.G., Analyst, 2000, vol. 125, no. 11, p. 2125.

    Article  CAS  Google Scholar 

  19. Geladi, P. and Kowalski, B.R., Anal. Chim. Acta, 1986, vol. 185, p. 1.

    Article  CAS  Google Scholar 

  20. Naguib, I.A., Bull. Fac. Pharm., 2011, vol. 49, no. 2, p. 91.

    CAS  Google Scholar 

  21. Naguib, I.A., Abdelaleem, E.A., Draz, M.E., and Zaazaa, H.E., Spectrochim. Acta, Part A, 2014, vol. 130, p. 350.

    Article  CAS  Google Scholar 

  22. Efron, B. and Tibshirani, R.J., An Introduction to the Bootstrap, Ser.: Monographs on Statistics and Applied Probability, vol. 57, New York: Chapman & Hall, 1993.

  23. Hijorth, J.S., Computer Intensive Statistical Methods: Validation, Model Selection and Bootstrap, New York: Chapman & Hall, 1994.

    Google Scholar 

  24. Haaland, D.M. and Melgaard, D.K., Appl. Spectrosc., 2000, vol. 54, p. 1303.

    Article  CAS  Google Scholar 

  25. Saeys, W., Beullens, K., Lammertyn, J., Ramon, H., and Naes, T., Anal. Chem., 2008, vol. 80, no. 13, p. 4951.

    Article  CAS  Google Scholar 

  26. Naguib, I.A., Abdelrahman, M.M., El Ghobashy, M.R., and Ali, N.A., Spectrochim. Acta, Part A, 2014, vol. 130, p. 350.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma F. Abdallah.

Ethics declarations

The authors declare that there is no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim A. Naguib, Ali, N.W., Abdelaleem, E.A. et al. Two Chemometric Models for Cyclobenzaprine·HCl Determination in Presence of its Two Major Oxidative Degradation Products. J Anal Chem 75, 608–614 (2020). https://doi.org/10.1134/S1061934820050135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820050135

Keywords:

Navigation