Skip to main content
Log in

Turbulent Convection of Liquid Sodium in an Inclined Cylinder of Unit Aspect Ratio

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Turbulent convection of liquid sodium (Prandtl number Pr = 0.0093) in a cylinder of unit aspect ratio, heated at one end face and cooled at the other, is studied numerically. The flow regimes with inclination angles β = 0°, 20°, 40°, 70° with respect to the vertical are considered. The Rayleigh number is 1.5 × 107 . Three-dimensional nonstationary simulations allow one to get instant and average characteristics of the process and to study temperature pulsation fields. A mathematical model is based on the Boussinesq equations for thermogravitational convection with use of the LES (large-eddy simulations) approach for small-scale turbulence modeling. Simulations were carried out with a nonuniform numerical grid consisting of 2.9 × 106 nodes. It is shown that the flow structure strongly depends on β. The large-scale circulation (LSC) exists in the cylinder at any β. Under moderate inclination (β = 20°), the strong oscillations of the LSC orientation angle with dominant frequency are observed. Increasing the inclination up to 40° leads to stabilization of the large-scale flow and there is no dominant frequency of oscillations in this case. It is shown that more intensive temperature pulsations occur at small cylinder inclinations. At any β the regions with intensive pulsations are concentrated in the areas along low and upper cylinder faces. The maximum values of pulsations occur in the area close to lateral walls, where hot and cold fluid flows collide. The intensity of temperature pulsations decreases with increasing distance from the lateral walls. The Reynolds number which characterizes the total energy of the flow reaches its maximum value at β = 20° and then decreases with increasing β. The mean flow has maximum intensity at β = 40°. Turbulent velocity pulsation energy decreases monotonically with increasing inclination angle. It is shown that the inclination leads to an increase in heat transfer along the cylinder axis. The Nusselt number at β = 40° is 26% higher than that in the vertical cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahlers, G., Grossmann, S., and Lohse, D., Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection, Rev. Mod. Phys., 2009, vol. 81, no. 2, pp. 503–537. https://doi.org/10.1103/revmodphys.81.503

    Article  ADS  Google Scholar 

  2. Chilla, F. and Schumacher, J., New perspectives in turbulent Rayleigh-Benard convection, Eur. Phys. J. E, 2012, vol. 35, no. 7, 58. https://doi.org/10.1140/epje/i2012-12058-1

    Article  Google Scholar 

  3. Kolesnichenko, I., Khalilov, R., Teimurazov, A., and Frick, P., On boundary conditions in liquid sodium convective experiments, J. Phys.: Conf. Ser., 2017, vol. 891, no. 1, 012075. https://doi.org/10.1088/1742-6596/891/1/012075

    Google Scholar 

  4. Khalilov, R., Kolesnichenko, I., Pavlinov, A., Mamykin, A., Shestakov, A., and Frick, P., Thermal convection of liquid sodium in inclined cylinders, Phys. Rev. Fluids, 2018, vol. 3, no. 4, 043503. https://doi.org/10.1103/PhysRevFluids.3.043503

    Article  ADS  Google Scholar 

  5. Scheel, J.D. and Schumacher, J., Predicting transition ranges to fully turbulent viscous boundary layers in low Prandtl number convection flows, Phys. Rev. Fluids, 2017, vol. 2, no. 12, 123501. https://doi.org/10.1103/physrevfluids.2.123501

    Article  ADS  Google Scholar 

  6. Teimurazov, A. and Frick, P., Thermal convection of liquid metal in a long inclined cylinder, Phys. Rev. Fluids, 2017, vol. 2, no. 11, 113501. https://doi.org/10.1103/physrevfluids.2.113501

    Article  ADS  Google Scholar 

  7. Frick, P., Khalilov, R., Kolesnichenko, I., Mamykin, A., Pakholkov, V., Pavlinov, A., and Rogozhkin, S., Turbulent convective heat transfer in a long cylinder with liquid sodium, Europhys. Lett., 2015, vol. 109, no. 1, 14002. https://doi.org/10.1209/0295-5075/109/14002

    Article  ADS  Google Scholar 

  8. Vasil’ev, A.Y., Kolesnichenko, I.V., Mamykin, A.D., Frick, P.G., Khalilov, R.I., Rogozhkin, S.A., and Pakholkov, V.V., Turbulent convective heat transfer in an inclined tube filled with sodium, Tech. Phys., 2015, vol. 60, no. 9, pp. 1305–1309. https://doi.org/10.1134/s1063784215090236

    Article  Google Scholar 

  9. Guo, S.-X., Zhou, S.-Q., Cen, X.-R., Qu, L., Lu, Y.-Z., Sun, L., and Shang, X.-D., The effect of cell tilting on turbulent thermal convection in a rectangular cell, J. Fluid Mech., 2014, vol. 762, pp. 273–287. https://doi.org/10.1017/jfm.2014.655

    Article  ADS  MathSciNet  Google Scholar 

  10. Shishkina, O. and Horn, S., Thermal convection in inclined cylindrical containers, J. Fluid Mech., 2016, vol. 790, R3. https://doi.org/10.1017/jfm.2016.55

    Article  ADS  MathSciNet  Google Scholar 

  11. Kolesnichenko, I.V., Mamykin, A.D., Pavlinov, A.M., Pakholkov, V.V., Rogozhkin, S.A., Frick, P.G., Khalilov, R.I., and Shepelev, S.F., Experimental study on free convection of sodium in a long cylinder, Therm. Eng., 2015, vol. 62, no. 6, pp. 414–422. https://doi.org/10.1134/s0040601515060026

    Article  ADS  Google Scholar 

  12. Zwirner, L. and Shishkina, O., Confined inclined thermal convection in low-Prandtl-number fluids, J. Fluid Mech., 2018, vol. 850, pp. 984–1008. https://doi.org/10.1017/jfm.2018.477

    Article  ADS  MathSciNet  Google Scholar 

  13. Kirillov, P.L. and Deniskina, N.B., Teplofizicheskie svoistva zhidkometallicheskikh teplonositelei (spravochnye tablitsy i sootnosheniya) (Thermophysical Properties of Liquid Metal Coolants: Reference Tables and Ratios), Moscow: TsNIIAtominform, 2000

    Google Scholar 

  14. Smagorinsky, J., General circulation experiments with the primitive equations. I. The basic experiment, Mon. Weather Rev., 1963, vol. 91, pp. 99–164. https://doi.org/10.1175/1520-0493(1963)091%3c0099:GCEWTP%3e2.3.CO;2

    Article  ADS  Google Scholar 

  15. Deardorff, J.W., A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, J. Fluid Mech., 1970, vol. 41, pp. 453–480. https://doi.org/10.1017/S0022112070000691

    Article  ADS  Google Scholar 

  16. Weller, H.G., Tabor, G., Jasak, H., and Fureby, C., A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys., 1998, vol. 12, pp. 620–631. https://doi.org/10.1063/1.168744

    Article  ADS  Google Scholar 

  17. Issa, R., Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comput. Phys., 1986, vol. 62, no. 1, pp. 40–65. https://doi.org/10.1016/0021-9991(86)90099-9

    Article  ADS  MathSciNet  Google Scholar 

  18. Ferziger, J.H. and Perić, M., Computational Methods for Fluid Dynamics, New York: Springer, 2002.

    Book  Google Scholar 

  19. Fletcher, R., Conjugate gradient methods for indefinite systems, Lect. Notes Math., 1976, vol. 506, pp. 73–89. https://doi.org/10.1007/BFb0080116

    Article  MathSciNet  Google Scholar 

  20. Verzicco, R. and Camussi, R., Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell, J. Fluid Mech., 2003, vol. 477, pp. 19–49. https://doi.org/10.1017/S0022112002003063

    Article  ADS  Google Scholar 

  21. Stevens, R.J.A.M., Verzicco, R., and Lohse, D., Radial boundary layer structure and Nusselt number in Rayleigh-Benard convection, J. Fluid Mech., 2010, vol. 643, pp. 495–507. https://doi.org/10.1017/S0022112009992461

    Article  ADS  Google Scholar 

  22. Shishkina, O., Stevens, R.J.A.M., Grossmann, S., and Lohse, D., Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution, New J. Phys., 2010, vol. 12, no. 7, 075022. https://doi.org/10.1088/1367-2630/12/7/075022

    Article  ADS  Google Scholar 

  23. Cioni, S., Ciliberto, S., and Sommeria, J., Strongly turbulent Rayleigh-Benard convection in mercury: comparison with results at moderate Prandtl number, J. Fluid Mech., 1997, vol. 335, pp. 111–140. https://doi.org/10.1017/S0022112096004491

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. D. Mandrykin or A. S. Teimurazov.

Additional information

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 16-01-00459-a).

Russian Text © The Author(s), 2019, published in Vychislitel’naya Mekhanika Sploshnykh Sred, 2019, Vol. 11, No. 4, pp. 417–428.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandrykin, S.D., Teimurazov, A.S. Turbulent Convection of Liquid Sodium in an Inclined Cylinder of Unit Aspect Ratio. J Appl Mech Tech Phy 60, 1237–1248 (2019). https://doi.org/10.1134/S0021894419070101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894419070101

Keywords

Navigation