Skip to main content
Log in

Fracture of Quasi-Brittle Geomaterial with a Circular Hole under Non-Uniformly Distributed Compression

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The influence of hole diameter on the fracture of quasi-brittle geomaterial in the stress concentration zone under non-uniformly distributed compression has been studied theoretically and experimentally taking into account the size effect. The failure load is determined using modified nonlocal criteria derived from the average stress criterion, the point stress criterion, and the fictitious crack criterion and containing a. complex parameter that characterizes the size of the fracture process zone and takes into account not only the material structure, but also the plastic properties of the material, the geometry of the sample, and loading conditions. The calculation results are compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Suknev, “Fracture of Brittle Geomaterial with a. Circular Hole under Biaxial Loading,” Prikl. Mekh. Tekh. Fiz. 56 (6), 166–172 (2015) [J. Appl. Mech. Tech. Phys. 56 (6), 1078–1083 (2015)].

    Google Scholar 

  2. K. Wieghardt, “Uber das Spalten und Zerreisen Elastischer Korper,” Z. Math. Phys. 55 (1/2), 60–103 (1907).

    MATH  Google Scholar 

  3. H. Neuber, Kerhspannungslehre, Grundlagen fur eine Genaue Spannungsrechnung (Springer-Verlag, Berlin, 1937).

    Google Scholar 

  4. V. V. Novozhilov, “On the Necessary and Sufficient Criteria for Brittle Strength,” Prikl. Mat. Mekh. 33 (2), 212–222 (1969).

    Google Scholar 

  5. M. E. Waddoups, J. R. Eisenmann, and B. E. Kaminski, “Macroscopic Fracture Mechanics of Advanced Composite Materials,” J. Compos. Mater. 5 (4), 446–454 (1971).

    Article  ADS  Google Scholar 

  6. J. M. Whitney and R. J. Nuismer, “Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations,” J. Compos. Mater. 8 (4), 253–265 (1974).

    Article  ADS  Google Scholar 

  7. S. K. Maiti and R. A. Smith, “Comparison of the Criteria for Mixed Mode Brittle Fracture Based on the Preinstability Stress-Strain Field. Pt 1. Slit and Elliptical Cracks under Uniaxial Tensile Loading,” Int. J. Fracture 23 (4), 281–295 (1983).

    Article  Google Scholar 

  8. B. D. Annin and V. N. Maksimenko, “Evaluation of the Failure of Plates Made of Composite Materials with Holes,” Mekh. Komp. Mater., No. 2, 284–290 (1989).

    Google Scholar 

  9. A. Seweryn and Z. Mroz, “A Non-Local Stress Failure Condition for Structural Elements under Multiaxial Loading,” Eng. Fracture Mech. 51 (6), 955–973 (1995).

    Article  Google Scholar 

  10. S. E. Mikhailov, “A Functional Approach to Non-Local Strength Condition and Fracture Criteria,” Eng. Fracture Mech. 52 (4), 731–754 (1995).

    Article  Google Scholar 

  11. V. M. Kornev, “Integral Criteria for the Brittle Strength of Cracked Bodies with Defects in the Presence of Vacancies in the Tip of a. Crack. Strength of Compacted Ceramics-Type Bodies,” Prikl. Mekh. Tekh. Fiz. 37 (5), 168–177 (1996) [J. Appl. Mech. Tech. Phys. 37 (5), 756–764 (1996)].

    Google Scholar 

  12. D. Leguillon, “Strength or Toughness? A. Criterion for Crack Onset at a. Notch,” Eur. J. Mech. A. Solids 21 (1), 61–72 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  13. D. Taylor, The Theory of Critical Distances: A. New Perspective in Fracture Mechanics (Elsevier, Oxford, 2007).

    Google Scholar 

  14. A. Sapora, A. R. Torabi, S. Etesam, and P. Cornetti, “Finite Fracture Mechanics Crack Initiation from a. Circular Hole,” Fatigue Fract. Eng. Mater. Struct. 41 (7), 1627–1636 (2018).

    Article  Google Scholar 

  15. S. V. Suknev, “Nonlocal and Gradient Fracture Criteria for Quasi-Brittle Materials under Compression,” Fiz. Mezomekh. 21 (4), 22–32 (2018).

    Google Scholar 

  16. P. Lazzarin, F. Berto, and M. R. Ayatollahi, “Brittle Failure of Inclined Key-Hole Notches in Isostatic Graphite under In-Plane Mixed Mode Loading,” Fatigue Fract. Eng. Mater. Struct. 36 (9), 942–955 (2013).

    Article  Google Scholar 

  17. A. R. Torabi and E. Pirhadi, “Stress-Based Criteria for Brittle Fracture in Key-Hole Notches under Mixed Mode Loading,” Eur. J. Mech., A: Solids 49, 1–12 (2015).

    Article  ADS  Google Scholar 

  18. R. B. Pipes, R. C. Wetherhold, and J. W. Gillespie (Jr.), “Notched Strength ol Composite Materials,” J. Compos. Mater. 13 (2), 148–160 (1979).

    Article  ADS  Google Scholar 

  19. S. C. Tan, “Laminated Composites Containing an Elliptical Opening. 2. Experiment and Model Modification,” J. Compos. Mater. 21 (10), 949–968 (1987).

    Article  ADS  Google Scholar 

  20. L. I. Sedov, Course in Continuum Mechanics, Vol II: Physical Functions and Formulations of Problems (Nauka, Moscow, 1984; Wolters-Noordhoff, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Suknev.

Additional information

Original Russian Text © S.V. Suknev.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 60, No. 6, pp. 162–172, November-December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suknev, S.V. Fracture of Quasi-Brittle Geomaterial with a Circular Hole under Non-Uniformly Distributed Compression. J Appl Mech Tech Phy 60, 1115–1124 (2019). https://doi.org/10.1134/S0021894419060178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894419060178

Keywords

Navigation