Skip to main content
Log in

Photocatalytic Activity of the Products of Heat Treatment of Calcium Tetraacetate Titanyl and Calcium Tetrahydroxy Titanyl Prepared by Solution Techniques

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper presents a comparative analysis of the influence of acid and alkaline synthesis media on specific structural features of materials and their sorption characteristics during heat treatment of a precursor to calcium titanate. The liquid-phase synthesis medium is shown to influence the photocatalytic activity of CaTiO3 and its precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Lewis, G., Properties of open-cell porous metals and alloys for orthopaedic applications, J. Mater. Sci. Mater. Med., 2013, vol. 24, no. 10, pp. 2293–2325. https://doi.org/10.1007/s10856-013-4998-y

    Article  CAS  PubMed  Google Scholar 

  2. Li, Y.H., Yang, C., Zhao, H.D., Qu, S.G., Li, X.Q., and Li, Y.Y., New developments of Ti-based alloys for biomedical applications, J. Mater., 2014, vol. 7, no. 3, pp. 1709–1800. https://doi.org/10.3390/ma7031709

    Article  CAS  Google Scholar 

  3. Lei, X., Xu, B., Yang, G., Shi, T., Liu, D., and Yang, B., Direct calciothermic reduction of porous calcium titanate to porous titanium, J.Mater. Sci. Eng., C, 2018, vol. 91, pp. 125–134. https://doi.org/10.1016/j.msec.2018.05.027

    Article  CAS  Google Scholar 

  4. Song, E., Chen, Y., Li, A., Sun, Y., Yang, R., Wang, J., Zhang, H., Li, J., and Zhang, D., Preparation and adsorbing performance of calcium titanate with template method, J. Mater. Manufact. Processes, 2017, vol. 32, no. 12, pp. 1428–1434. https://doi.org/10.1080/10426914.2017.1339320

    Article  CAS  Google Scholar 

  5. Zhang, D. and Hou, P., Preparation of nano-calcium titanate powder and its adsorption behavior for lead ion and cadmium ion in water, J. Acta Chim. Sinica, 2009, vol. 67, pp. 1336–1342.

    CAS  Google Scholar 

  6. Zhang, D., Zhang, C.L., and Zhou, P., Preparation of porous nano-calcium titanate microspheres and its adsorption behavior for heavy metal ion in water, J. Hazard. Mater., 2011, vol. 186, nos. 2–3, pp. 971–977. https://doi.org/doi 10.1016/j.jhazmat.2010.11.096

    Article  CAS  Google Scholar 

  7. Zhang, D., Wang, M., Ren, G.J., and Song, E.J., Preparation of biomorphic porous calcium titanate and its application for preconcentration of nickel in water and food samples, J.Mater. Sci. Eng., C, 2013, vol. 33, no. 8, pp. 4677–4683.https://doi.org/10.1016/j.msec.2013.07.030

    Article  CAS  Google Scholar 

  8. Evans, I.R., Howard, J.A.K., Sreckovic, T., and Ristic, M.M., Variable temperature in situ X-ray diffraction study of mechanically activated synthesis of calcium titanate CaTiO3, J. Mater. Res. Bull., 2003, vol. 38, pp. 1203–1213. https://doi.org/10.1016/s0025-5408(03)00113-2

    Article  CAS  Google Scholar 

  9. Kawashima, A., Matsubara, K., and Honda, K., Development of heterogeneous base catalysts for biodiesel production, J. Bioresour. Technol., 2008, vol. 99, no. 9, pp. 3439–3443. https://doi.org/10.1016/j.biortech.2007.08.009

    Article  CAS  Google Scholar 

  10. Tyliszczak, B., Gaca, K.Z., Sobczak-Kupiec, A., and Dulian, P., Mechanochemical synthesis and investigations of calcium titanate powders and their acrylic dispersions, J. Eur. Ceram. Soc., 2014, vol. 34, no. 10, pp. 2259–2264. https://doi.org/10.1016/j.jeurceramsoc.2014.02.020

    Article  CAS  Google Scholar 

  11. Kathirvel, K., Rajasekar, R., Kumar, S.A.R., and Sathiskumar, A., Effect of calcium titanium oxide coating on the power generation of solar cells, Int. J. Sci. Eng. Res., 2016, vol. 7, no. 4, pp. 127–130.

    Google Scholar 

  12. Khoei, N.A., Kharaziha, M., and Labbaf, S., Sol–gel synthesis of (Ca–Ba)TiO3 nanoparticles for bone tissue engineering, J. Ultrafine Grained Nanostruct. Mater., 2018, vol. 51, no. 1, pp. 77–83. https://doi.org/10.22059/JUFGNSM.2018.01.10

    Article  CAS  Google Scholar 

  13. Souza, A.E., Silva, R.A., Santos, G.T.A., Moreira, M.L., Volanti, D.P., Teixeira, S.R., and Longo, E., Photoluminescence of barium–calcium titanates obtained by the microwave-assisted hydrothermal method (MAH), J. Chem. Phys. Lett., 2010, vol. 488, nos. 1–3, pp. 54–56. https://doi.org/10.1016/j.cplett.2010.01.065

    Article  CAS  Google Scholar 

  14. Patil, B.M., Srinivasa, R.S., and Dharwadkar, S.R., Synthesis of CaTiO3 from calcium titanyl oxalate hexahydrate (CTO) as precursor employing microwave heating technique, J. Bull. Mater. Sci., 2007, vol. 30, no. 3, pp. 225–229. https://doi.org/10.1007/s12034-007-0040-7

    Article  CAS  Google Scholar 

  15. Yahya, N.Y., Ngadi, N., Jusoh, M., and Halim, N.A.A., Characterization and parametric study of mesoporous calcium titanate catalyst for transesterification of waste cooking oil into biodiesel, J.Energy Conversion Management, 2016, vol. 129, pp. 275–283. https://doi.org/10.1016/j.enconman.2016.10.037

    Article  CAS  Google Scholar 

  16. Yahya, N.Y., Ngadi, N., Wong, S., and Hassan, O., Transesterification of used cooking oil (UCO) catalyzed by mesoporous calcium titanate: kinetic and thermodynamic studies, J.Energy Conversion Management, 2018, vol. 164, pp. 210–218. https://doi.org/10.1016/j.enconman.2018.03.011

    Article  CAS  Google Scholar 

  17. Yoshida, H., Zhang, L., Sato, M., Morikawa, T., Kajino, T., Sekito, T., Matsumoto, S., and Hirata, H., Calcium titanate photocatalyst prepared by a flux method for reduction of carbon dioxide with water, J. Catal. Today, 2015, vol. 251, pp. 132–139. https://doi.org/10.1016/j.cattod.2014.10.039

    Article  CAS  Google Scholar 

  18. Korneev, N., Mayorga, D., Stepanov, S., Veenhuis, H., Buse, K., Kuper, C., Hesse, H., and Kratzig, E., Holographic and non-steady-state photocurrent characterization of photorefractive barium–calcium titanate, J. Opt. Commun., 1999, vol. 160, pp. 98–102. https://doi.org/10.1016/S0030-4018(98)00648-8

    Article  CAS  Google Scholar 

  19. Ahmed, S., Rasul, M.G., Martens, W.N., Brown, R., and Hashib, M.A., Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review, J. Water,Air Soil Pollution, 2011, vol. 215, pp. 3–29. https://doi.org/10.1007/s11270-010-0456-3

    Article  CAS  Google Scholar 

  20. Sakthivel, S., Janczarek, M., and Kisch, H., Visible light activity and photoelectrochemical properties of nitrogen doped TiO2, J. Phys. Chem. B, 2004, vol. 108, no. 50, pp. 19 384–19 387. https://doi.org/10.1021/jp046857q

    Article  CAS  Google Scholar 

  21. Tripathy, N., Ghosh, S.P., and Kar, J.P., Transformation of sputtered calcium copper titanate thin film into nanorods by sequential annealing, J. Ceram. Int., 2018, vol. 44, no. 4, pp. 4052–4057. https://doi.org/10.1016/j.ceramint.2017.11.201

    Article  CAS  Google Scholar 

  22. Redfern, S.A.T., High-temperature structural phase transitions in perovskite (CaTiO3), J. Phys.: Condens. Matter, 1996, vol. 8, pp. 8267–8275. https://doi.org/10.1088/0953-8984/8/43/019

    Article  CAS  Google Scholar 

  23. Guyot, F., Richet, P., Courtial, P., and Gillet, P., High-temperature heat capacity and phase transitions of CaTiO3 perovskite, J. Phys. Chem. Miner., 1993, vol. 20, no. 3, pp. 141–146. https://doi.org/10.1007/bf00200116

    Article  CAS  Google Scholar 

  24. Usinskas, P., Stankeviciute, Z., Beganskiene, A., and Kareiva, A., Sol–gel derived porous and hydrophilic calcium hydroxyapatite coating on modified titanium substrate, J. Surface Coat. Technol., 2016, vol. 307, pp. 935–940. https://doi.org/10.1016/j.surfcoat.2016.10.032

    Article  CAS  Google Scholar 

  25. Ivanov, K.V., Agafonov, A.V., and Alekseeva, O.V., Mechanochemical synthesis and photocatalytic activity of calcium titanate, Izv. Vyssh. Uchebn. Zaved.,Ser.: Khim. Khim. Tekhnol., 2016, vol. 59, no. 6, pp. 83–89.

    CAS  Google Scholar 

  26. Agafonov, A.V., Ivanov, K.V., and Alekseeva, O.V., Low-temperature synthesis of barium titanate in aqueous solution, Izv. Vyssh. Uchebn. Zaved.,Ser.: Khim. Khim. Tekhnol., 2018, vol. 61, no. 12, pp. 56–62. https://doi.org/10.6060/ivkkt.20186112.5720

    Article  CAS  Google Scholar 

  27. Ivanov, K.V. and Agafonov, A.V., Comparative parameters of the electrorheological effect in suspensions of nanosized barium titanyl acetates and titanyl oxalates in PMS-20 silicon oil, Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 4, pp. 394–398. https://doi.org/10.1134/s2070205114040066

    Article  Google Scholar 

  28. Ivanov, K.V., Alekseeva, O.V., Kraev, A.S., and Agafonov, A.V., Template-free synthesis and properties of mesoporous calcium titanate, Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 4, pp. 391–395. https://doi.org/10.1134/s2070205119040063

    Article  CAS  Google Scholar 

  29. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 1985, vol. 57, no. 4, pp. 603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  30. Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.M., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., and Unger, K.K., Recommendations for the characterization of porous solids (technical report), Pure Appl. Chem., 1994, vol. 66, no. 8, pp. 1739–1758. https://doi.org/10.1351/pac199466081739

    Article  CAS  Google Scholar 

  31. Krzak-Ros, J., Filipiak, J., Pezowicz, C., Baszczuk, A., Baszczuk, A., Miller, M., Kowalski, M., and Będziński, R., The effect of substrate roughness on the surface structure o TiO2, SiO2, and doped thin films prepared by the sol–gel method, J. Acta Bioeng. Biomech., 2009, vol. 11, no. 2, pp. 21–29.

    Google Scholar 

  32. Ivanov, K.V., Agafonov, A.V., Baranchikov, A.E., Ivanov, V.K., Kozyukhin, S.A., Fatyushina, E.V., and Kozik, V.V., Influence of thermal treatment of nanometer-sized titanate and barium orthotitanate precursors on the electrorheological effect, J. Nanosyst.–Phys. Chem. Math., 2018, vol. 9, no. 6, pp. 746–753. https://doi.org/10.17586/2220-8054-2018-9-6-746-753

    Article  CAS  Google Scholar 

  33. Hwang, U.Y., Park, H.S., and Koo, K.K., Behavior of barium acetate and titanium isopropoxide during the formation of crystalline barium titanate, J. Ind. Eng. Chem. Res., 2004, vol. 43, pp. 728–734. https://doi.org/10.1021/ie030276q

    Article  CAS  Google Scholar 

  34. Xian, T., Yang, H., Dai, J.F., Wei, Z.Q., Ma, J.Y., and Feng, W.J., Photocatalytic properties of BiFeO3 nanoparticles with different sizes, J. Mater. Lett., 2011, vol. 65, pp. 1573–1575. https://doi.org/10.1016/j.matlet.2011.02.080

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to our colleagues at the Verkhnevolzhsk Regional Physicochemical Characterization Center (Shared Research Facilities Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Ivanov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, K.V., Alekseeva, O.V. & Agafonov, A.V. Photocatalytic Activity of the Products of Heat Treatment of Calcium Tetraacetate Titanyl and Calcium Tetrahydroxy Titanyl Prepared by Solution Techniques. Inorg Mater 56, 494–501 (2020). https://doi.org/10.1134/S0020168520040068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520040068

Keywords:

Navigation