Skip to main content
Log in

Effect of ZrC and ZrO2 Additions on the Microstructure and Properties of ZrB2–SiC Ceramics

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the effect of ZrC and ZrO2 additions on the microstructure and properties of ceramic composites based on ZrB2–5% SiC, produced by pressure-sintering mechanically activated powders at a temperature of 1600°C. The results demonstrate that the addition of ZrO2 increases the density, hardness, and fracture toughness of ceramic composites based on ZrB2–5% SiC. In particular, the KIc of the ZrB2–5% SiC ceramic is 4.6 ± 0.3 MPa m1/2 and that of the composite containing 20% ZrO2 is 7.3 ± 0.4 MPa m1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Rangaraj, L. et al., Processing of refractory metal borides, carbides and nitrides, Key Eng. Mater., 2009, vol. 395, pp. 69–88. https://doi.org/10.4028/www.scientific.net/KEM.395.69

    Article  CAS  Google Scholar 

  2. Monteverde, F., Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering, J. Alloys Compd., 2007, vol. 428, nos. 1–2, pp. 197–205. https://doi.org/10.1016/j.jallcom.2006.01.107

    Article  CAS  Google Scholar 

  3. Zimmermann, J.W., Hilmas, G.E., Fahrenholtz, W.G., Monteverde, F., and Bellosi, A., Fabrication and properties of reactively hot pressed ZrB2–SiC ceramics, J. Eur. Ceram. Soc., 2007, vol. 27, no. 7, pp. 2729–2736. https://doi.org/10.1016/j.jeurceramsoc.2006.11.074

    Article  CAS  Google Scholar 

  4. Squire, T.H. and Marschall, J., Material property requirements for analysis and design of UHTC components in hypersonic applications, J. Eur. Ceram. Soc., 2010, vol. 30, pp. 2239–2251. https://doi.org/10.1016/j.jeurceramsoc.2010.01.026

    Article  CAS  Google Scholar 

  5. Fahrenholtz, W.G., Hilmas, G.E., Chamberlain, A.L., Zimmermann, J.W., and Fahrenholtz, B., Processing and characterization of ZrB2 based ultra-high temperature monolithic and fibrous monolithic ceramics, J. Mater. Sci., 2004, vol. 39, pp. 5951–5957.

    Article  CAS  Google Scholar 

  6. Melendez, J.J., Dominguez-Rodriguez, A., Monteverde, F., Melandri, C., and Portu, G., Characterisation and high temperature mechanical properties of zirconium boride-based materials, J. Eur. Ceram. Soc., 2002, vol. 22, pp. 2543–2549. https://doi.org/10.1016/S0955-2219(02)00114-0

    Article  Google Scholar 

  7. Kalish, D., Clougherty, E.V., and Kreder, K., Strength, fracture mode and thermal stress resistance of HfB2 and ZrB2, J. Am. Ceram. Soc., 1969, vol. 52, pp. 30–36. https://doi.org/10.1111/j.1151-2916.1969.tb12655.x

    Article  CAS  Google Scholar 

  8. Buyakov, A.S. and Kulkov, S.N., Porous ceramic composite ZrO2(MgO)–MgO for osteoimplantology, IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 175, paper 012 025. https://doi.org/10.1088/1757-899X/175/1/012025

    Article  Google Scholar 

  9. Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G., and Zaykoski, J.A., Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc., 2007, vol. 90, pp. 1347–1364. https://doi.org/10.1111/j.1551-2916.2007.01583.x

    Article  CAS  Google Scholar 

  10. Guo, S.Q., Densification of ZrB2-based composites and their mechanical and physical properties: a review, J. Eur. Ceram. Soc., 2009, vol. 29, pp. 995–1011. https://doi.org/10.1016/j.jeurceramsoc.2008.11.008

    Article  CAS  Google Scholar 

  11. Zhang, S.C., Hilmas, G.E., and Fahrenholtz, W.G., Mechanical properties of sintered ZrB2–SiC ceramics, J. Eur. Ceram. Soc., 2011, vol. 31, pp. 893–901. https://doi.org/10.1016/j.jeurceramsoc.2010.11.013

    Article  CAS  Google Scholar 

  12. Guo, W.M., Yang, Z.G., and Zhang, G.J., Comparison of ZrB2–SiC ceramics with Yb2O3 additive prepared by hot pressing and spark plasma sintering, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 452–455. https://doi.org/10.1016/j.ijrmhm.2011.02.001

    Article  CAS  Google Scholar 

  13. Zhou, P., Hu, P., Zhang, X., and Han, W., Laminated ZrB2–SiC ceramic with improved strength and toughness, Scr. Mater., 2011, vol. 64, pp. 276–279. https://doi.org/10.1016/j.scriptamat.2010.10.005

    Article  CAS  Google Scholar 

  14. Evans, A.G. and Charles, E.A., Fracture toughness determination by indentation, J. Am. Ceram. Soc., 1976 vol. 59, pp. 371–372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x

    Article  CAS  Google Scholar 

  15. Saltykov, S.A., Stereometricheskaya metallografiya (Stereometric Metallography), Moscow: Metallurgiya, 1976.

  16. Zhang, G.-J., Deng, Zh.-Y., Kondo, N., Yang, J.-F., and Ohji, T., Reactive hot pressing of ZrB2–SiC composites, J. Am. Ceram. Soc., 2000, vol. 83, no. 9, pp. 2330–2332. https://doi.org/10.1111/j.1151-2916.2000.tb01558.x

    Article  CAS  Google Scholar 

  17. Zhu, T., Li, W., Zhang, X., Hu, P., Hong, Ch., and Weng, L., Damage tolerance and R-curve behavior of ZrB2–ZrO2 composites, Mater. Sci. Eng., A, 2009, vol. 516, pp. 297–301. https://doi.org/10.1016/j.msea.2009.03.023

    Article  CAS  Google Scholar 

  18. Hussainova, I., Voltšihhin, N., Cura, E., and Hannula, S.-P., Densification and characterization of spark plasma sintered ZrC–ZrO2 composites, Mater. Sci. Eng., A, 2014, vol. 597, pp. 75–81. https://doi.org/10.1016/j.msea.2013.12.058

    Article  CAS  Google Scholar 

  19. Zamora, V., Ortiz, A.L., Guiberteau, F., and Nygren, M., In situ formation of ZrB2–ZrO2 ultra-high-temperature ceramic composites from high-energy ball-milled ZrB2 powders, J. Alloys Compd., 2012, vol. 518, pp. 38–43. https://doi.org/10.1016/j.jallcom.2011.12.102

    Article  CAS  Google Scholar 

  20. Li, W., Zhang, X., Hong, Ch., Han, W., and Han, J., Preparation, microstructure and mechanical properties of ZrB2–ZrO2 ceramics, J. Eur. Ceram. Soc., 2009, vol. 29, pp. 779–786. https://doi.org/10.1016/j.jeurceramsoc.2008.06.033

    Article  CAS  Google Scholar 

  21. Zhang, X., Li, W., Hong, C., and Han, W., Microstructure and mechanical properties of ZrB2-based composites reinforced and toughened by zirconia, Int. J. Appl. Ceram. Tech., 2008, vol. 5, no. 5, pp. 499–504. https://doi.org/10.1111/j.1744-7402.2008.02199.x

    Article  CAS  Google Scholar 

  22. Faber, K.T. and Evans, A.G., Crack deflection processes—1. Theory, Acta Metall., 1983, vol. 31, no. 4, pp. 565–576. https://doi.org/10.1016/0001-6160(83)90046-9

    Article  Google Scholar 

  23. Faber, K.T. and Evans, A.G., Crack deflection processes—II. Experiment, Acta Metall., 1983, vol. 31, no. 4, pp. 577–584. https://doi.org/10.1016/0001-6160(83)90047-0

    Article  Google Scholar 

  24. Porter, D.L., Evans, A.G., and Heuer, A.H., Transformation-toughening in partially-stabilized zirconia (PSZ), Acta Metall., 1979, vol. 27, no. 10, pp. 1649–1654. https://doi.org/10.1016/0001-6160(79)90046-4

    Article  CAS  Google Scholar 

  25. Loganathan, A. and Gandhi, A.S., Effect of phase transformations on the fracture toughness of yttria stabilized zirconia, Mater. Sci. Eng., A, 2012, vol. 556, pp. 927–935. https://doi.org/10.1016/j.msea.2012.07.095

    Article  CAS  Google Scholar 

  26. Mamivand, M., Zaeem, A.M., and Kadiri, E.H., Phase field modeling of stress-induced tetragonal-to-monoclinic transformation in zirconia and its effect on transformation toughening, Acta Metall., 2014, vol. 64, pp. 208–219. https://doi.org/10.1016/j.actamat.2013.10.031

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported through the State Academies of Sciences Basic Research Program (2013–2020, program no. III.23.2.3) and by the National Research Tomsk Polytechnic University (project no. 223/2018: Nanomaterials and Nanotechnologies Science and Education Innovative Center, Leading Research University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Dedova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, A.Y., Voitsik, V.F., Dedova, E.S. et al. Effect of ZrC and ZrO2 Additions on the Microstructure and Properties of ZrB2–SiC Ceramics. Inorg Mater 56, 522–527 (2020). https://doi.org/10.1134/S0020168520050040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520050040

Keywords:

Navigation