Skip to main content
Log in

Surface Morphology and Composition of a NbC/C Composite Studied by Scanning Electron Microscopy and X-Ray Photoelectron Spectroscopy

  • Published:
Inorganic Materials Aims and scope

Abstract

The surface morphology and composition of a NbC/C composite prepared via thermal decomposition of the products of reaction between NbCl5 and acetylene [9] have been studied by scanning electron microscopy and X-ray photoelectron spectroscopy. The results demonstrate that the NbC thus synthesized consists of nanocrystals. The surface layer of the NbC/C composite contains nine carbon atoms per Nb atom. The niobium is present in the form of the NbC carbide (33%) and the NbO2 (10%) and Nb2O5 (57%) oxides, with Nb 3d5/2 electron binding energies of 203.8, 205.0, and 207.2 eV, which are tentatively attributed to Nb2+ (NbC), Nb4+, and Nb5+ ions, respectively. The presence of NbO2 and Nb2O5 in the surface layer is due to active reaction of the NbC/C composite with atmospheric oxygen and moisture during the sample preparation process. Our results on the structure of the C1s electron spectra lead us to assume that the carbon on the surface of the composite particles has the form of a graphene-like carbon material. The composite does not become charged when exposed to an X-ray beam, which suggests that it is a weak dielectric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Oshikawa, K., Nagai, M., and Omi, S., Characterization of molybdenum carbides for methane reforming by TPR, XRD, and XPS, J. Phys. Chem. B, 2001, vol. 105, pp. 9124–9131.

    Article  CAS  Google Scholar 

  2. Schweitzer, N.M., Schaidle, J.A., Ezekoye, O.K., Pan, X., Linic, S., and Thompson, L.T., High activity carbide supported catalysts for water gas shift, J. Am. Chem. Soc., 2011, vol. 133, pp. 2378–2384.

    Article  CAS  Google Scholar 

  3. Wan, C., Regmi, Y.N., and Leonard, B.M., Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction, Angew. Chem., Int. Ed., 2014, vol. 53, pp. 6407–6410.

    Article  CAS  Google Scholar 

  4. Porosoff, M.D., Yang, X., Boscoboinik, J.A., and Chen, J.G., Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO, Angew. Chem., Int. Ed., 2014, vol. 53, pp. 6705–6710.

    Article  CAS  Google Scholar 

  5. Qin Yu, Chen Ping, and Duan Jinzhao, Carbon nanofibers supported molybdenum carbide catalysts for hydrodeoxygenation of vegetable oils, RSC Adv., 2013, vol. 3, pp. 17 485–17 491.

    Article  CAS  Google Scholar 

  6. Tolosa, A., Kruner, B., Fleischman, S., Jackel, N., Zeigel, M., Asian, M., Grobelsek, I., and Presser, V., Niobium carbide nanofibers as a versatile precursor for high power supercapacitor and high energy battery electrodes, J. Mater. Chem. A, 2016, vol. 4, pp. 16  003–16 016.

    Article  CAS  Google Scholar 

  7. Il’in, E.G., Parshakov, A.S., Iskhakova, L.D., Buryak, A.K., and Dzhavad Ogly, A.A., Thermal stability and decomposition products of a MoCl1.9 ± 0.1(C30 ± 1H30 ± 1) composite, Inorg. Mater., 2014, vol. 51, no. 6, pp. 631–635.

    Article  Google Scholar 

  8. Il’in, E.G., Parshakov, A.S., Buryak, A.K., Kochubei, D.I., Drobot, D.V., and Nefedov, V.I., Nanosized clusters of molybdenum chlorides—active sites in catalytic acetylene oligomerization, Dokl. Phys. Chem., 2009, vol. 427, no. 2, pp. 150–154.

    Article  Google Scholar 

  9. Il’in, E.G., Parshakov, A.S., and Iskhakova, L.D., The studies of NbCl5 with acetylene reaction product as a new precursor for simple and economical synthesis of ceramic NbC/C nanocomposite, Advances in Synthesis and Complexing: 5th Int. Scientific Conf., Moscow, 2019, vol. 2, p. 25.

  10. Il’in, E.G., Parshakov, A.S., Teterin, A.Yu., Maslakov, K.I., and Teterin, Yu.A., X-ray photoelectron spectroscopic characterization of the acetylene cyclotrimerization catalyst NbCl2(CnHn) (n = 10–12), Russ. J. Inorg. Chem., 2011, vol. 56, no. 11, pp. 1788–1793.

    Article  Google Scholar 

  11. Il’in, E.G., Parshakov, A.S., Teterin, A.Yu., Maslakov, K.I., and Teterin, Yu.A., X-ray photoelectron study of the MoCl2C30H30 composite, Inorg. Mater., 2011, vol. 47, no. 4, pp. 442–448.

    Article  Google Scholar 

  12. Il’in, E.G., Beirakhov, A.G., Teterin, Yu.A., Maslakov, K.I., and Teterin, A.Yu., Surface morphology and composition of nanocrystalline MoO2 produced via the thermal decomposition of the MoO2(i-C3H7NHO)2 complex, Inorg. Mater., 2017, vol. 53, no. 6, pp. 602–612.

    Article  Google Scholar 

  13. Il’in, E.G., Parshakov, A.S., Teterin, Yu.A., Maslakov, K.I., and Teterin, A.Yu., surface composition and morphology of a carbon matrix/Mo2C composite material, Inorg. Mater., 2017, vol. 53, no. 5, pp. 469–476.

    Article  Google Scholar 

  14. Marques, M.T., Ferraria, A.M., Correia, J.B., Botelho do Rego, A.M., and Vilar, R., XRD, XPS and SEM characterization of Cu–NbC nanocomposite produced by mechanical alloying, Mater. Chem. Phys., 2008, vol. 109, pp. 174–180.

    Article  CAS  Google Scholar 

  15. Nefedov, V.N., Rentgenoelektronnaya spektroskopiya khimicheskikh soedinenii (X-ray Photoelectron Spectroscopy of Chemical Compounds), Moscow: Khimiya, 1984.

  16. Teterin, Yu.A. and Gagarin, S.G., Inner valence molecular orbitals of compounds and the structure of X‑ray photoelectron spectra, Usp. Khim., 1996, vol. 65, no. 10, pp. 895–912.

    Article  CAS  Google Scholar 

  17. Teterin, Yu.A. and Baev, A.S., Rentgenovskaya fotoelektronnaya spektroskopiya soedinenii lantanoidov (X-ray Photoelectron Spectroscopy of Lanthanide Compounds), Moscow: TsNIIAtominform, 1987.

  18. Shirley, D.A., High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B: Solid State, 1972, no. 5, pp. 4709–4714.

    Article  Google Scholar 

  19. Nemoshkalenko, V.V. and Aleshin, A.G., Elektronnaya spektroskopiya kristallov (Electron Spectroscopy of Crystals), Kiev: Naukova Dumka, 1976.

  20. Baev, A.S., Zelenkov, A.G., Kuakov, V.M., Odinov, B.V., Smilga, V.P., Teterin, Yu.A., Tumanov, Yu.P., and Chugunov, O.K., Radiation damage in pyrolytic graphite studied by X-ray photoelectron spectroscopy, Zh. Strukt. Khim., 1980, vol. 21, no. 5, pp. 29–33.

    CAS  Google Scholar 

  21. Ihara, H. and Watanabe, K., Electronic bond structures of the NbC–NbN alloy system from the X-ray photoelectron spectroscopic measurement, Solid State Commun., 1981, vol. 38, pp. 1211–1213.

    Article  CAS  Google Scholar 

  22. Zhizhin, E.V., Pudikov, D.A., Rybkin, A.G., Ul’yanov, P.G., and Shikin, A.M., Synthesis and electronic structure of graphene on a nickel film adsorbed on graphite, Phys. Solid State, 2015, vol. 57, no. 9, pp. 1888–1895.

    Article  CAS  Google Scholar 

  23. Aleshin, V.G., Kharlamov, A.I., and Prokopenko, V.M., X-ray photoelectron spectra of metal-like carbides, Izv. Akad. Nauk SSSR,Neorg. Mater., 1981, vol. 17, no. 3, pp. 550–553.

    CAS  Google Scholar 

  24. Sosulnikov, M.I. and Teterin, Yu.A., X-ray photoelectron studies of Ca, Sr, Ba and their oxides and carbonates, J. Electron Spectrosc. Relat. Phenom., 1992, vol. 59, pp. 111–126.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-11083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Il’in.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’in, E.G., Parshakov, A.S., Teterin, Y.A. et al. Surface Morphology and Composition of a NbC/C Composite Studied by Scanning Electron Microscopy and X-Ray Photoelectron Spectroscopy. Inorg Mater 56, 443–450 (2020). https://doi.org/10.1134/S0020168520050052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520050052

Keywords:

Navigation