Skip to main content
Log in

Electrochemical Properties of Carbon Electrodes Modified with Nanoparticles of Fe4[Fe(CN)6]3, K2Co[Fe(CN)6], and Their Sodium-Containing Analogs

  • Published:
Inorganic Materials Aims and scope

Abstract

Iron and cobalt hexacyanoferrates and their analogs (MHCF) have been synthesized as nanomaterials for the fabrication of C/MHCF composite electrodes. We have studied the structural characteristics and elemental composition of the synthesized compounds by X-ray diffraction and energy dispersive X-ray microanalysis using a VEGA II LMU scanning electron microscope equipped with an INCA Energy 450/XT X-ray microanalysis system (X-Act DDD detector). The results demonstrate that the composite electrodes containing 20% MHCF have a better electrochemical performance than does a carbon electrode. The incorporation of sodium into the structure of iron and cobalt hexacyanoferrates ensures the smallest decrease in the specific capacitance of the composite electrodes at high charge–discharge rates and reduces the charge transport resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Jia, Z., Wangab, J., and Wang, Y., Electrochemical sodium storage of copper hexacyanoferrate with a well-defined open framework for sodium ion batteries, RSC Adv., 2014, no. 4, pp. 22768–22774. https://doi.org/10.1039/c4ra02559h

    Article  CAS  Google Scholar 

  2. Giorgetti, M., Berrettoni, M., Filipponi, A., Kulesza, P., and Marassi, R., Evidence of four-body contributions in the EXAFS spectrum of Na2Co[Fe(CN)6], Chem. Phys. Lett., 1997, vol. 275, nos. 1–2, pp. 108–112. https://doi.org/10.1016/S0009-2614(97)00724-0

    Article  CAS  Google Scholar 

  3. Wessels, C., Huggins, R., and Cui, Y., Copper hexacyanoferrate battery electrodes with long cycle life and high power, J. Nat. Commun., 2011, vol. 2, no. 550. https://doi.org/10.1038/ncomms1563

  4. He, Y., Zhang, P., Wang, M., Wang, F., Tan, D., Li, Y., Zhuang, X., Zhang, F., and Feng, X., Nano-sandwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric micro-supercapacitors with ultrahigh energy density, Mater. Horiz., 2019, no. 6, pp. 1041–1049. https://doi.org/10.1039/C9MH00063A

    Article  CAS  Google Scholar 

  5. Padolfo, A. and Hollenkamp, A., Carbon properties and their role in supercapacitors, J. Power Sources, 2006, vol. 157, no. 1, pp. 11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  6. Bonnefoia, L., Simona, P., Fauvarquea, J.F., Sarrazinb, C., Sarraub, J.F., and Dugasta, A., Electrode compositions for carbon power supercapacitors, J. Power Sources, 1999, vol. 80, nos. 1–2, pp. 149–155. https://doi.org/10.1016/S0378-7753(99)00069-5

    Article  Google Scholar 

  7. Rychagov, A.Yu., Vol’fkovich, Yu.M., Vorotyntsev, M.A., Kvacheva, L.D., Konev, D.V., Krestinin, A.V., Kryazhev, Yu.G., Kuznetsov, V.L., Kukushkina, Yu.A., Mukhin, V.M., Sokolov, V.V., and Chervonobrodov, S.P., Promising electrode materials for supercapacitors, Elektrokhim. Energ., 2012, vol. 12, no. 4, pp. 167–180.

    CAS  Google Scholar 

  8. Frackowiak, E. and Béguin, F., Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 2001, vol. 39, pp. 937–950. https://doi.org/10.1016/S0008-6223(00)00183-4

    Article  CAS  Google Scholar 

  9. Vol’fkovich, Yu.M., Mikhalin, A.A., Bograchev, D.A., and Sosenkin, V.E., Carbon electrodes with high pseudocapacitance for supercapacitors, Russ. J. Electrochem., 2012, vol. 48, no. 4, pp. 467–477. https://doi.org/10.1134/S1023193512030159

    Article  CAS  Google Scholar 

  10. Gryzlov, D.Yu., Rychagov, A.Yu., Skundin, A.M., and Kulova, T.L., ENER G2 P2 activated carbon as a material for nonaqueous-electrolyte supercapacitors, Elektrokhim. Energ., 2015, vol. 15, no. 4, pp. 160–166. https://doi.org/10.18500/1608-4039-2015-15-4-160-166

    Article  Google Scholar 

  11. Lee, W.J., Hwang, T.H., Hwang, J.O., Kim, H.W., Lim, J., Jeong, H.Y., Shim, J., Han, T.H., Kim, J.Y., Choi, J.W., and Kim, S.O., N-doped graphitic self-encapsulation for high performance silicon anodes in lithium-ion batteries, Energy Environ. Sci., 2014, vol. 7, no. 2, pp. 621–626. https://doi.org/10.1039/c3ee43322f

    Article  CAS  Google Scholar 

  12. Jayalakshmi, M. and Balasubramanian, K., Simple capacitors to supercapacitors—an overview, Int. J. Electrochem. Sci., 2008, no. 3, pp. 1196–1217.

  13. Conway, B.E., Electrochemical Capacitors: Scientific Fundamentals and Technological Applications, London: Kluwer, 1999.

    Google Scholar 

  14. Burke, A., Ultracapacitors: why, how, and where is the technology, J. Power Sources, 2000, vol. 91, no. 1, pp. 37–50. https://doi.org/10.1016/S0378-7753(00)00485-7

    Article  CAS  Google Scholar 

  15. Pabst, W. and Gregorová, E., Characterization of Particles and Particle Systems, Prague: ICT, 2007.

    Google Scholar 

  16. You, Y., Wu, X.L., Yin, Y.X., and Guo, Y.G., High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries, J. Energy Environ. Sci., 2014, vol. 7, no. 5, pp. 1643–1647. https://doi.org/10.1039/C3EE44004D

    Article  CAS  Google Scholar 

  17. Sun, H., Sun, H., Wang, W., Jiao, H., and Jiao, S., Fe4[Fe(CN)6]3: a cathode material for sodium-ion batteries, RSC Adv., 2014, vol. 4, no. 81, pp. 42991–42995. https://doi.org/10.1039/C4RA07531E

    Article  CAS  Google Scholar 

  18. Omarova, M., Koishybay, A., Yesibolati, N., Mentbayeva, A., Umirov, N., Ismailov, K., Adair, D., Babaa, M.-R., Kurmanbayeva, I., and Bakenov, Z., Nickel hexacyanoferrate nanoparticles as a low cost cathode material for lithium-ion batteries, Electrochim. Acta, 2015, vol. 184, pp. 58–63. https://doi.org/10.1016/j.electacta.2015.10.031

    Article  CAS  Google Scholar 

  19. Pasta, M., Wessels, C.D., Liu, N., Nelson, J., McDowell, M.T., Huggins, R.A., Toney, M.F, and Cui Yi, Full open-framework batteries for stationary energy storage, Nat. Commun., 2014, vol. 5, paper 3007. https://doi.org/10.1038/ncomms4007

  20. Lu, K., Song, B., Gao, X., Dai, H., Zhang, J., and Ma, H., High-energy cobalt hexacyanoferrate and carbon micro-spheres aqueous sodium-ion capacitors, J. Power Sources, 2016, vol. 303, pp. 347–353. https://doi.org/10.1016/j.jpowsour.2015.11.031

    Article  CAS  Google Scholar 

  21. Lu, K., Li, D., Gao, X., Dai, H., Wang, N., and Ma, H., An advanced aqueous sodium-ion supercapacitor with a manganous hexacyanoferrate cathode and a Fe3O4/rGO anode, J. Mater. Chem. A, 2015, vol. 3, no. 31, pp. 16013–16019. https://doi.org/10.1039/C5TA04244E

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to our colleagues at the Research Center for Mineral Raw Materials and Environmental Monitoring (Shared Research Facilities Center), Southern Federal University, for examining the microstructure and determining the elemental composition of our samples.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, state research target, theme no. 13.3005.2017/4.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Chernyavina.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyavina, V.V., Berezhnaya, A.G. & Tenenika, O.O. Electrochemical Properties of Carbon Electrodes Modified with Nanoparticles of Fe4[Fe(CN)6]3, K2Co[Fe(CN)6], and Their Sodium-Containing Analogs. Inorg Mater 56, 451–458 (2020). https://doi.org/10.1134/S0020168520050015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520050015

Keywords:

Navigation