Skip to main content
Log in

Zirconium d-Transition Metal Phosphates As Catalysts for Selective Dehydration of Methanol to Dimethyl Ether

  • Published:
Inorganic Materials Aims and scope

Abstract

M0.5(1 +x)FexZr2 –x(PO4)3 (M = Ni, Cu, Mn; 0 ≤ x ≤ 0.5) phosphates have been studied as catalysts for methanol conversion in the temperature range 200–450°C. The results demonstrate that the most active and selective catalysts among these materials are Ni0.5Zr2(PO4)3 and Cu0.65Fe0.3Zr1.7(PO4)3. The dimethyl ether yield on the synthesized materials is comparable to that on available commercial catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Müller, M. and Hübsch, U., Dimethyl ether, in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley, 2005, 7th ed.

    Google Scholar 

  2. Pérez-Uriarte, P., Ateka, A., Gayubo, A.G., Cordero-Lanzac, T., Aguayo, A.T., and Bilbao, J., Deactivation kinetics for the conversion of dimethyl ether to olefins over a HZSM-5 zeolite catalyst, Chem. Eng. J., 2017, vol. 311, pp. 367–377. https://doi.org/10.1016/j.cej.2016.11.104

    Article  CAS  Google Scholar 

  3. Wang, Z., He, T., Li, J., Wu, J., Qin, J., Liu, G., Han, D., Zi, Z., Li, Z., and Wu, J., Design and operation of a pilot plant for biomass to liquid fuels by integrating gasification, DME synthesis and DME to gasoline, Fuel, 2016, vol. 186, pp. 587–596. https://doi.org/10.1016/j.fuel.2016.08.108

    Article  CAS  Google Scholar 

  4. Sorenson, S.C. and Mikkelsen, S.V., Performance and emissions of a 0.273 liter direct injection diesel engine fuelled with neat dimethyl ether, SAE Trans., 1995, vol. 104, pp. 80–90. http://www.jstor.org/stable/44615066

    Google Scholar 

  5. Wang, D., Zhu, G., Li, Zh., and Xia, C., Polyoxymethylene dimethyl ethers as clean diesel additives: fuel freezing and prediction, Fuel, 2019, vol. 237, pp. 833–839. https://doi.org/10.1016/j.fuel.2018.10.014

    Article  CAS  Google Scholar 

  6. Park, S.H. and Lee, C.S., Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel, Energy Convers. Manage., 2014, vol. 86, pp. 848–863. https://doi.org/10.1016/j.enconman.2014.06.051

    Article  CAS  Google Scholar 

  7. Ogawa, T., Inoue, N., Shikada, T., Inokoshi, O., and Ohno, Y., Direct dimethyl ether (DME) synthesis from natural gas, Stud. Surf. Sci. Catal., 2004, vol. 147, pp. 37–384. https://doi.org/10.1016/S0167-2991(04)80081-8

    Article  Google Scholar 

  8. Arcoumanis, C., Bae, C., Crookes, R., and Kinoshita, E., The potential of dimethyl ether (DME) as an alternative fuel for compression–ignition engines: a review, Fuel, 2008, vol. 87, pp. 1014–1030. https://doi.org/10.1016/j.fuel.2007.06.007

    Article  CAS  Google Scholar 

  9. Fleisch, T.H., Basu, A., and Sills, R.A., Introduction and advancement of a new clean global fuel: the status of DME developments in China and beyond, J. Nat. Gas Sci. Eng., 2012, vol. 9, pp. 94–107. https://doi.org/10.1016/j.jngse.2012.05.012

    Article  CAS  Google Scholar 

  10. Fleisch, T.H., McCarthy, C., Basu, A., Udovich, C., Charbonneau, P., Slodowske, W., Mikkelsen, S.V., and McCandless, J., A new clean diesel technology: demonstration of ULEV emissions on a navistar diesel engine fueled with dimethyl ether, SAE Trans., 1995, vol. 104, pp. 42–53. www.jstor.org/stable/44615063

    Google Scholar 

  11. Ramos, F.S., Duarte de Farias, A.M., Borges, L.E.P., Monteiroc, J.L., Fraga, M.A., Sousa-Aguiar, E.F., and Appel, L.G., Role of dehydration catalyst acid properties on one-step DME synthesis over physical mixtures, Catal. Today, 2005, vol. 101, pp. 39–44. https://doi.org/10.1016/j.cattod.2004.12.007

    Article  CAS  Google Scholar 

  12. Il’in, A.B., Orekhova, N.V., Ermilova, M.M., and Yaroslavtsev, A.B., Catalytic activity of LiZr2(PO4)3 nasicon-type phosphates in ethanol conversion process in conventional and membrane reactors, Catal. Today, 2016, vol. 268, pp. 29–36. https://doi.org/10.1016/j.cattod.2015.12.017

    Article  CAS  Google Scholar 

  13. Xu, M., Lunsford, J.H., Goodman, D.W., and Bhattacharyya, A., Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts, Appl. Catal., A, 1997, vol. 149, pp. 289–301. https://doi.org/10.1016/S0926-860X(96)00275-X

  14. Ng, K.L., Chadwick, D., and Toseland, B.A., Kinetics and modelling of dimethyl ether synthesis from synthesis gas, Chem. Eng. Sci., 1999, vol. 54, pp. 3587–3592. https://doi.org/10.1016/S0009-2509(98)00514-4

    Article  CAS  Google Scholar 

  15. Fu, Y., Hong, T., Chen, J., Auroux, A., and Shen, J., Surface acidity and the dehydration of methanol to dimethyl ether, Thermochim. Acta, 2005, vol. 434, pp. 22–26. https://doi.org/10.1016/j.tca.2004.12.023

    Article  CAS  Google Scholar 

  16. Vishwanathan, V., Jun, K.W., and Ron, H.S., Vapour phase dehydration of crude methanol to dimethyl ether over Na-modified H-ZSM-5 catalysts, Appl. Catal., A, 2004, vol. 276, pp. 251–255. https://doi.org/10.1016/j.apcata.2004.08.011

  17. Yaripour, F., Mollavali, M., Mohammad Jam, S., and Atashi, H., Catalytic dehydration of methanol to dimethyl ether catalyzed by aluminum phosphate catalysts, Energy Fuels, 2009, vol. 23, pp. 1896–1900. https://doi.org/10.1021/ef800856c

    Article  CAS  Google Scholar 

  18. Fazlollahnejad, M., Taghizadeh, M., Eliassi, A., and Bakeri, G., Experimental study and modeling of an adiabatic fixed-bed reactor for methanol dehydration to dimethyl ether, Chin. J. Chem. Eng., 2009, vol. 17, pp. 630–634. https://doi.org/10.1016/S1004-9541(08)60255-4

    Article  CAS  Google Scholar 

  19. Lytkina, A.A., Orekhova, N.V., and Yaroslavtsev, A.B., Catalysts for the steam reforming and electrochemical oxidation of methanol, Inorg. Mater., 2018, vol. 54, no. 13, pp. 1315–1329. https://doi.org/10.1134/S0020168518130034

    Article  CAS  Google Scholar 

  20. Sukhanov, M.V., Ermilova, M.M., Orekhova, N.V., Tereshchenko, G.F., Pet’kov, V.I., and Shchelokov, I.A., Catalytic properties of zirconium-containing framework phosphates for methanol dehydration, Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, 2007, no. 1, pp. 89–94.

  21. Ziyad, M., Arsalane, S., Kacimi, M., Coudurier, G., Millet, L.-M., Jacques, C., and Védrine, J.C., Behavior of silver–thorium phosphate AgTh2(PO4)3 in butan-2-ol conversion, Appl. Catal., A, 1996, vol. 147, pp. 363–373. https://doi.org/10.1016/S0926-860X(96)00162-7

  22. Ienealem, S.N., Gul’yanova, S.G., Chekhlova, T.K., Timakin, A.G., Ermilova, M.M., and Pet’kov, V.I., Catalytic activity and selectivity of combined zirconium–3d-transition metals phosphates in isopropanol conversion, Russ.J. Phys. Chem., A, 2000, vol. 74, no. 12, pp. 2082–2084.

    Google Scholar 

  23. Brik, Y., Kacimi, M., Bozon-Verduraz, F., and Ziyad, M., Characterization of active sites on AgHf2(PO4)3 in butan-2-ol conversion, Microporous Mesoporous Mater., 2001, vol. 43, pp. 103–112. https://doi.org/10.1016/S0926-860X(96)00162-7

    Article  CAS  Google Scholar 

  24. Sadykov, V.A., Pavlova, S.N., Zabolotnaya, G.V., Chaikina, M.V., Maksimovskaya, R.I., Tsybulya, S.V., Burgina, E.B., Zaikovskii, V.I., Litvak, G.S., Frolova, Yu.V., Kochubei, D.I., Kriventsov, V.V., Paukshtis, E.A., Kolomiichuk, V.N., Lunin, V.V., Kuznetsova, N.N., Agrawal, D., and Roy, R., Scientific bases for the synthesis of highly dispersed framework zirconium phosphate catalysts for paraffin isomerization and selective oxidation, Kinet. Catal., 2001, vol. 42, no. 3, pp. 390–398. https://doi.org/10.1023/A:1010421500856

    Article  CAS  Google Scholar 

  25. Sukhanov, M.V., Ermilova, M.M., Orekhova, N.V., Pet’kov, V.I., and Tereshchenko, G.F., Catalytic properties of zirconium phosphate and double phosphates of zirconium and alkali metals with a NaZr2(PO4)3 structure, Russ. J. Appl. Chem., 2006, vol. 79, no. 4, pp. 614–618. https://doi.org/10.1134/S1070427206040215

    Article  CAS  Google Scholar 

  26. Pylinina, A.I., Mikhalenko, I.I., Ermilova, M.M., Orekhova, N.V., and Pet’kov, V.I., Dehydration of butanols on copper-containing zirconium orthophosphates, Russ. J. Appl. Chem., 2010, vol. 84, no. 3, pp. 400–404. https://doi.org/10.1134/S0036024410030106

    Article  CAS  Google Scholar 

  27. Pet’kov, V.I., Sukhanov, M.V., Ermilova, M.M., and Tereshchenko, G.F., Development and synthesis of bulk and membrane catalysts based on framework phosphates and molybdates, Russ. J. Appl. Chem., 2010, vol. 83, no. 10, pp. 1731–1741. https://doi.org/10.1134/S1070427210100022

    Article  CAS  Google Scholar 

  28. Il’in, A.B., Novikova, S.A., Sukhanov, M.V., Ermilova, M.M., Orekhova, N.V., and Yaroslavtsev, A.B., Catalytic activity of NASICON-type phosphates for ethanol dehydration and dehydrogenation, Inorg. Mater., 2012, vol. 48, no. 4. pp. 397–401. https://doi.org/10.1134/S002016851204005X

    Article  CAS  Google Scholar 

  29. Ermilova, M.M., Sukhanov, M.V., Borisov, R.S., Orekhova, N.V., Pet’kov, V.I., Novikova, S.A., Il’in, A.B., and Yaroslavtsev, A.B., Synthesis of the new framework phosphates and their catalytic activity in ethanol conversion into hydrocarbons, Catal. Today, 2012, vol. 193, pp. 37–41. https://doi.org/10.1016/j.cattod.2012.02.029

    Article  CAS  Google Scholar 

  30. Povarova, E.I., Pylinina, A.I., and Mikhalenko, I.I., Catalytic dehydrogenation of propanol-2 on Na-Zr phosphates containing Cu, Co, and Ni, Russ.J. Phys. Chem. A, 2012, vol. 86, no. 6, pp. 935–941. https://doi.org/10.1134/S0036024412060210

    Article  CAS  Google Scholar 

  31. Asabina, E.A., Pet’kov, V.I., Glukhova, I.O., Orekhova, N.V., Ermilova, M.M., Zhilyaeva, N.A., and Yaroslavtsev, A.B., Synthesis and catalytic properties of M0.5(1 +x)FexTi2 –x(PO4)3 (M = Co, Ni, Cu; 0 ≤ x ≤ 2) for methanol conversion reactions, Inorg. Mater., 2015, vol. 51, no. 8, pp. 793–798. https://doi.org/10.1134/S002016851508004X

    Article  CAS  Google Scholar 

  32. Moshareva, M.A., Il’in, A.B., Zhilyaeva, N.A., Novikova, S.A., and Yaroslavtsev, A.B., Catalytic activity of materials based on complex hafnium phosphates with the NASICON structure in ethanol conversion, Nanotechnol. Russ., 2017, vol. 12, nos. 9–10, pp. 514–519. https://doi.org/10.1134/S199507801705007X

    Article  CAS  Google Scholar 

  33. Shahbazi-Alavi, H., Nazemzadeh, S.H., Ziarati, A., and Safaei-Ghomi, J., Nano-NiZr4(PO4)6 as a superior catalyst for the synthesis of propargylamines under ultrasound irradiation, Z. Naturforsch., B, 2018, vol. 73, nos. 3–4, pp. 185–189. https://doi.org/10.1515/znb-2017-0178

    Article  CAS  Google Scholar 

  34. Pylinina, A.I. and Mikhalenko, I.I., Catalytic activity of thermally treated Li3Fe2(PO4)3 in the conversion of butan-1-ol, Mendeleev Commun., 2012, vol. 22, no. 3, pp. 150–151. https://doi.org/10.1016/j.mencom.2012.05.013

    Article  CAS  Google Scholar 

  35. Il’in, A.B., Ermilova, M.M., Orekhova, N.V., Cretin, M., and Yaroslavtsev, A.B., Conversion of aliphatic C1–C2 alcohols on In, Nb, Mo-doped complex lithium phosphates and HZr2(PO4)3 with NASICON-type structure, J. Alloys Compd., 2018, vol. 748, pp. 583–590. https://doi.org/10.1016/j.jallcom.2018.03.099

    Article  CAS  Google Scholar 

  36. Tereshchenko, G.F., Orekhova, N.V., Ermilova, M.M., Malygin, A.A., and Orlova, A.I., Nanostructured phosphorus-oxide-containing composite membrane catalysts, Catal. Today, 2006, vol. 118, nos. 1–2, pp. 85–89. https://doi.org/10.1016/j.cattod.2005.12.014

    Article  CAS  Google Scholar 

  37. Ilin, A.B., Orekhova, N.V., Ermilova, M.M., and Yaroslavtsev, A.B., Catalytic activity of LiZr2(PO4)3 nasicon-type phosphates in ethanol conversion process in conventional and membrane reactors, Catal. Today, 2016, vol. 268, pp. 29–36. https://doi.org/10.1016/j.cattod.2015.12.017

    Article  CAS  Google Scholar 

  38. Ramírez, A.E., Solarte, N.J., Singh, L.H., Coaquira, J.A.H., and Gaona, J.S., Investigation of the magnetic properties of SrFe12O19 synthesized by the Pechini and combustion methods, J. Magn. Magn. Mater., 2017, vol. 438, pp. 100–106. https://doi.org/10.1016/j.jmmm.2017.04.042

    Article  CAS  Google Scholar 

  39. Alcaraz, L., Isasi, J., and Díaz-Guerra, C., Effects of preparation method and pH variation on the structural characteristics and luminescence properties of Y0.9Er0.1VO4 and Y0.9Er0.1V0.9Cr0.1O4 nanopowders, J. Lumin., 2015, vol. 165, pp. 105–114. https://doi.org/10.1016/j.jlumin.2015.04.038

    Article  CAS  Google Scholar 

  40. Hayer, F., Bakhtiary-Davijany, H., Myrstad, R., Holmen, A., Pfeifer, P., and Venvik, H.J., Characteristics of integrated micro packed bed reactor-heat exchanger configurations in the direct synthesis of dimethyl ether, Chem. Eng. Process., 2013, vol. 70, pp. 77–85. https://doi.org/10.1016/j.cep.2013.03.021

    Article  CAS  Google Scholar 

  41. Mironova, E.Y., Lytkina, A.A., Ermilova, M.M., Efimov, M.N., Zemtsov, L.M., Orekhova, N.V., Karpacheva, G.P., Bondarenko, G.N., Muraviev, D.N., and Yaroslavtsev, A.B., Ethanol and methanol steam reforming on transition metal catalysts supported on detonation synthesis nanodiamonds for hydrogen production, Int. J. Hydrogen Energy, 2015, vol. 40, no. 8, pp. 3557–3565. https://doi.org/10.1016/j.ijhydene.2014.11.082

    Article  CAS  Google Scholar 

  42. Yaripour, F., Baghaei, F., Schmidt, I., and Perregaard, J., Synthesis of dimethyl ether from methanol over aluminium phosphate and silica–titania catalysts, Catal. Commun., 2005, vol. 6, no. 8, pp. 542–549. https://doi.org/10.1016/j.catcom.2005.05.003

    Article  CAS  Google Scholar 

  43. Vishwanathan, V., Roh, H.S., Kim, J.W., and Jun, K.W., Surface properties and catalytic activity of TiO2–ZrO2 mixed oxides in dehydration of methanol to dimethyl ether, Catal. Lett., 2004, vol. 96, nos. 1–2, pp. 23–28. https://doi.org/10.1023/B:CATL.0000029524.94392.9f

    Article  CAS  Google Scholar 

  44. Abasov, S.I., Babaeva, F.A., Kuliev, B.B., Piriev, N.N., and Rustamov, M.I., Features of methanol and dimethyl ether conversion to hydrocarbons on modified zeolites Y and ZSM-5, Theor. Exper. Chem., 2013, vol. 49, no. 1, pp. 55–59. https://doi.org/10.1007/s11237-013-9295-9

    Article  CAS  Google Scholar 

  45. Khandan, N., Kazemeini, M., and Aghaziarati, M., Dehydration of methanol to dimethyl ether employing modified H-ZSM-5 catalysts, Iran. J. Chem. Eng., 2009, vol. 6, no. 1, pp. 3–11.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 18-29-12063 (synthesis), 18-33-00248 (catalytic tests), and 18-29-12063 (BET measurements of pore characteristics and catalyst structure refinement) and in part by the Russian Federation Ministry of Science and Higher Education (state research target for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences (assessment of catalytic activity)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Glukhova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glukhova, I.O., Asabina, E.A., Pet’kov, V.I. et al. Zirconium d-Transition Metal Phosphates As Catalysts for Selective Dehydration of Methanol to Dimethyl Ether. Inorg Mater 56, 395–401 (2020). https://doi.org/10.1134/S0020168520040056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520040056

Keywords:

Navigation