Skip to main content
Log in

Electrical Properties of Thin In2O3/C Films

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the structure and electrical properties of thin films based on the In2O3 semiconductor and carbon, grown by atomic layer deposition using ion-beam sputtering. The structure of the resultant materials, formed during layer-by-layer growth of island layers, is made up of nanocrystalline In2O3 granules distributed at random over amorphous carbon. The electrical transport properties of the In2O3/C thin films depend on their thickness. In the temperature range 80–300 K, the dominant electrical transport mechanism in the In2O3/C thin films of thickness h < 70 nm sequentially changes from variable range hopping between localized states in a narrow energy band near the Fermi level (between 80 and 120 K) to nearest neighbor hopping (between 120 and 250 K) and then to variable range hopping between localized states in the conduction band tail (between 250 and 300 K). The films of thickness h > 70 nm undergo a change from conduction associated with strong carrier localization to that due to the presence of percolation clusters formed by In2O3 nanocrystals, which shows up as a linear temperature dependence of conductivity, with a negative temperature coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Rakesh, A., Sharma, N., Maheshwar, Sh., and Sharon, M., Transparent conducting oxide films for various applications: a review, Rev. Adv. Mater. Sci., 2018, vol. 53, no. 1, pp. 79–89. https://doi.org/10.1515/rams-2018-0006

    Article  Google Scholar 

  2. Morales-Masis, M., De Wolf, S., Woods-Robinson, R., Ager, J.W., and Ballif, C., Transparent electrodes for efficient optoelectronics, Adv. Electron. Mater., 2017, vol. 3, no. 5, paper 1 600 529. https://doi.org/10.1002/aelm.201600529

  3. Ramanujam, J., Verma, A., Gonzalez-Diaz, B., and Guerrero-Lemus, R., Inorganic photovoltaics – planar and nanostructured devices, Prog. Mater. Sci., 2016, vol. 82, pp. 294–404. https://doi.org/10.1016/j.pmatsci.2016.03.005

    Article  CAS  Google Scholar 

  4. Korotcenkov, G., Brinzari, V., and Cho, B.K., In2O3- and SnO2-based thin film ozone sensors: fundamentals, J. Sens., 2016, paper 3 816 094. https://doi.org/10.1155/2016/3816094

  5. Derek, M.R., Sheikh, A.A., and Patricia, M.A., Nanoscale metal oxide-based heterojunctions for gas sensing: a review, Sens. Actuators, B, 2014, vol. 204, pp. 250–272. https://doi.org/10.1016/j.snb.2014.07.074

    Article  CAS  Google Scholar 

  6. Sanctis, S., Krausmann, J., and Guhl, C., Stacked indium oxide/zinc oxide heterostructures as semiconductors in thin film transistor devices: a case study using atomic layer deposition, J. Mater. Chem., 2018, vol. 6, pp. 464–472. https://doi.org/10.1039/C7TC03724D

    Article  CAS  Google Scholar 

  7. Park, J.W., So, H.S., Lee, H.M., Kim, H.J., Kim, H.K., and Lee, H., Transition from a nanocrystalline phase to an amorphous phase in In–Si–O thin films: the correlation between the microstructure and the optical properties, J. Appl. Phys., 2015, vol. 117, paper 155 305. https://doi.org/10.1063/1.4918658/

  8. Mitoma, N., Aikawa, S., Gao, X., Kizu, T., Shimizu, M., Lin, M.F., Nabatame, T., and Tsukagoshi, T., Stable amorphous In2O3-based thin-film transistors by incorporating SiO2 to suppress oxygen vacancies, Appl. Phys. Lett., 2014, vol. 104, paper 102 103. https://doi.org/10.1063/1.4868303

  9. Del Valle, J., Ramírez, J.G., Rozenberg, M.J., and Schuller, I.K., Challenges in materials and devices for resistive-switching-based neuromorphic computing, J. Appl. Phys., 2018, vol. 124, paper 211 101. https://doi.org/10.1063/1.5047800

  10. Zhilova, O.V., Pankov, S., Sitnikov, A.V., Kalinin, Yu.E., Kashirin, M.A., and Makagonov, V.A., Optical and electrical properties of thin-film hetero-structures of the In2O3–ZnO system, Mater. Res. Express, 2019, vol. 6, paper 086 330. https://doi.org/10.1088/2053-1591/ab2721

  11. Lee, S.J., Hwang, C.S., Pi, J.E., Yang, J.H., Byun, C.W., Chu, H.Y., Cho, K.I., and Cho, S.H., High-performance amorphous multilayered ZnO–SnO2 heterostructure thin-film transistors: fabrication and characteristics, ETRI J, 2015, vol. 37, pp. 1135–1142. https://doi.org/10.4218/etrij.15.0114.0743

    Article  Google Scholar 

  12. Zhilova, O.V., Pankov, S.Yu., Sitnikov, A.V., Kalinin, Yu.E., Volochaev, M.N., and Makagonov, V.A., Structure and electrophysical properties of thin-film SnO2–In2O3 heterostructures, J. Mater. Sci.–Mater. Electron., 2019, vol. 30, pp. 11859–11867. https://doi.org/10.1007/s10854-019-01503-w

    Article  CAS  Google Scholar 

  13. Cui, G., Han, D., Dong, J., Cong, Y., Zhang, X., Li, H., Yu, W., Zhang, S., Zhang, X., and Wang, Y., Effects of channel structure consisting of ZnO/Al2O3 multilayers on thin-film transistors fabricated by atomic layer deposition, Jpn. J. Appl. Phys., 2017, vol. 56, paper 04CG03. https://doi.org/10.7567/JJAP.56.04CG03

  14. Kalinin, Yu.E., Zhilova, O.V., Babkina, I.V., Sitnikov, A.V., Makagonov, V.A., and Remizova, O.I., Effect of heat treatment on the electrical properties of thin yttrium-doped In2O3 films, Inorg. Mater., 2018, vol. 54, no. 9, pp. 936–942. https://doi.org/10.1134/S0020168518090030

    Article  Google Scholar 

  15. Suchea, M., Katsarakis, N., Christoulakis, S., Nikolopoulou, S., and Kiriakidis, G., Low temperature indium oxide gas sensors, Sens. Actuators, B, 2006, vol. 118, pp. 135–141. https://doi.org/10.1016/j.snb.2006.04.020

    Article  CAS  Google Scholar 

  16. Rylkov, V.V., Nikolaev, S.N., Chernoglazov, K.Yu., Demin, V.A., Sitnikov, A.V., Presnyakov, M.Yu., Vasiliev, A.L., Perov, N.S., Vedeneev, A.S., Kalinin, Yu.E., Tugushev, V.V., and Granovsky, A.B., Tunneling anomalous Hall effect in nanogranular CoFe–B–Al–O films near the metal–insulator transition, Phys. Rev. B: Condens. Matter Mater. Phys., 2017, vol. 95, paper 144 202. https://doi.org/10.1103/PhysRevB.95.144202

  17. Kalinin, Yu.E., Kashirin, M.A., Makagonov, V.A., Pankov, S.Yu., and Sitnikov, A.V., Properties of amorphous carbon thin films grown by ion beam sputtering, Tech. Phys., 2017, vol. 62, no. 11, pp. 1724-1730. https://doi.org/10.1134/S1063784217110123

    Article  CAS  Google Scholar 

  18. Zhilova, O.V., Pankov, S.Yu., Sitnikov, A.V., Kalinin, Yu.E., and Babkina, I.V., The structure and the gas sensitive properties of the thin films of zinc oxide, AIP Conf. Proc., 2017, vol. 1886, paper 020 054. https://doi.org/10.1063/1.5002951

  19. Zhilova, O.V., Pankov, S.Y., Sitnikov, A.V., Kalinin, Y.E., and Babkina, I.V., The structure and electrical properties of In2O3–C heterogeneous system, AIP Conf. Proc., 2018, vol. 2015, paper 020 123. https://doi.org/10.1063/1.5055196

  20. Bondarenko, V.B. and Filimonov, A.V., Criterion for strong localization on a semiconductor surface in the Thomas–Fermi approximation, Semiconductors, 2017, vol. 51, no. 10, pp. 1321–1325. https://doi.org/10.1134/S1063782617100062

    Article  CAS  Google Scholar 

  21. Mott, N. and Davis, E., Electronic Processes in Non-Crystalline Materials, Oxford: Clarendon, 1979.

    Google Scholar 

  22. Lin, J.J. and Li, Z.Q., Electronic conduction properties of indium tin oxide: single-particle and many-body transport, J. Phys.: Condens. Matter, 2014, vol. 26, no. 34, paper 343 201. https://doi.org/10.1088/0953-8984/26/34/343201

  23. Suzuki K., Fuzimori, H., and Hashimoto, K., Amorfnye metally (Amorphous Metals), Moscow: Metallurgiya, 1987 (translated from Japanese).

  24. Polyanskaya, T.A. and Shmartsev, Yu.V., Quantum correction to the conductivity of semiconductor with a two-dimensional and a 3-dimensional electron-gas. Experiments, Phys. Tekh. Poluprovodn., 1989, vol. 23, no. 1, pp. 3–32.

    CAS  Google Scholar 

  25. Bartolomeo, D., Sarno, M., Giubileo, F., Altavilla, C., Iemmo, L., Piano, S., Bobba, F., Longobardi, M., Scarfato, A., Sannino, D., Cucolo, A.M., and Ciambelli, P., Multiwalled carbon nanotube films as small-sized temperature sensors, J. Appl. Phys., 2009, vol. 105, paper 064 518. https://doi.org/10.1063/1.3093680

  26. Zhilova, O.V., Makagonov, V.A., and Pankov, S.Yu., Structure of thin films of carbon-modified In2O3 and ZnO wide-band-gap semiconductors, Vestn. Voronezhsk. Gos. Tekh. Univ., 2018, vol. 14, no. 4, pp. 168–173.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target, project no. 3.1867, 2017/4.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Makagonov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babkina, I.V., Volochaev, M.N., Zhilova, O.V. et al. Electrical Properties of Thin In2O3/C Films. Inorg Mater 56, 374–381 (2020). https://doi.org/10.1134/S0020168520040019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520040019

Keywords:

Navigation