Skip to main content
Log in

Physical and Optical Properties of Borobismuthate Glasses Containing Vanadium Oxide

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Glasses with compositions 20BaO · 10Bi2O3 · (70 – x)B2O3 · xV2O5 with x = 0, 0.2, 0.4, 0.6, 0.8 and 1 mol % were prepared by melt quenching technique. The amorphous nature was established by X-ray diffraction studies. Fourier transform infrared studies carried out for samples and it exhibit absorption bands for oxides in various structural units. Physical parameters viz., density, molar volume, molar refraction, dielectric constant, electro negativity, polaron radius and oxygen packing density were calculated. Theoretical optical basicity was estimated and is increasing with vanadium content shows increasing polarizability of samples. Metallization criterion decreases shows the metallic nature of samples, this implies that prepared glass samples can be used as amorphous semiconductors and could be used in electronics and memory switching devices. Using UV-vis spectra optical band gap energy (Eopt) calculated and is decreased from 2.998–2.453 eV, linear refractive index is measured from Eopt. Increase in Urbach energy (Eu) with vanadium component is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Dumbaugh, W.H. and Lapp, J.C., Heavy metal-oxide glasses, J. Am. Ceram. Soc., 1992, vol. 75, pp. 2315–2326. https://doi.org/10.1111/j.1151-2916.1992.tb05581.x

  2. Hazra, S. and Ghosh, A., Structure and properties of nonconventional glasses in the binary bismuth cuprate system, Phys. Rev. B: Condens. Matter Mater. Phys., 1995, vol. 51, pp. 851–856. https://doi.org/10.1103/PhysRevB.51.851

  3. Dimitriev, Y. and Mihailova, V.T., Glass formation in binary systems with Bi2O3 and PbO participation, J. Sci. Lett., 1990, vol. 9, no. 11, pp. 1251–1254. https://doi.org/10.1007/BF00726510

    Article  CAS  Google Scholar 

  4. Hazra, S., Mandal, S., and Ghosh, A., Properties of unconventional lithium bismuthate glasses, Phys. Rev. B: Condens. Matter Mater. Phys., 1997, vol. 56, pp. 8021–8025.https://doi.org/10.1103/PhysRevB.56.8021

  5. Hall, D.W., Newhouse, M.A., Borrelli, N.F., Dumbaugh, W.H., and Weidman, D.L., Nonlinear optical susceptibilities of high-index glasses, Appl. Phys. Lett., 1989, vol. 54, pp. 1293–1295. https://doi.org/10.1063/1.100697

  6. Sugi Moto, N., Ultrafast optical switches and wavelength division multiplexing (WDM) amplifiers based on bismuthoxide glasses, J. Am. Ceram. Soc., 2002, vol. 85, pp. 1083–1088. doi.org/https://doi.org/10.1111/j.1151-2916.2002.tb00226.x

    Article  CAS  Google Scholar 

  7. Bhogi, A., Vijaya Kumar, R., and Kistaiah, P., Effect of alkaline earths on spectroscopic and structural properties of Cu2+ ions-doped lithium borate glasses, J. Non-Cryst. Solids, 2015, vol. 426, pp. 47–54. https://doi.org/10.1016/j.jnoncrysol.2015.06.012

    Article  CAS  Google Scholar 

  8. Komatsu, T. and Matusita, K., High Tc superconducting glass-ceramics, Thermochim. Acta, 1991, vol. 174, pp. 131–151. https://doi.org/10.1016/0040-6031(91)80157-E

    Article  CAS  Google Scholar 

  9. Zheng, H., Lin, P., Xu, R., and Mackenzie, J., Some optical properties of infrared transmitting Bi–Ca–Sr–Cu–O glasses, J. Appl. Phys., 1990, vol. 68, pp. 894–896. https://doi.org/10.1063/1.346754

    Article  CAS  Google Scholar 

  10. Gosh, A., Memory switching in bismuth-vanadate glasses, J. Appl. Phys., 1998, vol. 64, pp. 2652–2655. https://doi.org/10.1063/1.341605

    Article  Google Scholar 

  11. Austin, I.G. and Mott, N.F., Polarons in crystalline and non-crystalline materials, Adv. Phys., 1969, vol. 18, pp. 41–102. https://doi.org/10.1080/00018736900101267

    Article  CAS  Google Scholar 

  12. Sayer, M. and Mansingh, A., Transport properties of semiconducting phosphate glasses, Phys. Rev. B: Solid State, 1972, vol. 6, pp. 4629–4642. https://doi.org/10.1103/PhysRevB.6.4629

  13. Murawski, L., Chung, C.H., and Mackenzie, J.D., Electrical properties of semiconducting oxide glasses, J. Non-Cryst. Solids, 1979, vol. 32, pp. 91–104. https://doi.org/10.1016/0022-3093(79)90066-8

    Article  CAS  Google Scholar 

  14. Bhogi, A. and Kistaiah, P., Structural and optical properties of CuO doped lithium borate glasses, J. Phys. Chem. Glasses, 2015, vol. 56, pp. 197–202. https://doi.org/10.13036/17533562.56.5.197

    Article  Google Scholar 

  15. Ghosh, A. and Chakaborty, D., Electrical conduction in some sol-gel silicate glasses, Phys. Rev. B: Condens. Matter Mater. Phys., 1993, vol. 48, pp. 5167–5171. https://doi.org/10.1103/PhysRevB.48.5167

    Article  CAS  Google Scholar 

  16. Ghosh, A., Transport properties of vanadium germanate glassy semiconductors, Phys. Rev. B: Condens. Matter Mater. Phys., 1990, vol. 42, pp. 5665–5676. https://doi.org/10.1103/PhysRevB.42.5665

  17. Ghosh, A., Transport properties of semiconducting ternary vanadate glasses, J. Chem. Phys., 1995, vol. 102, pp. 1385–1389. https://doi.org/10.1063/1.468924

    Article  CAS  Google Scholar 

  18. Srikumar, T., Srinvasa Rao, C., Gandhi, Y., Venkatramaiah, N., Ravikumar, V., and Veeraiah, N., Microstructural, dielectric and spectroscopic properties of Li2O–Nb2O5–ZrO2–SiO2 glass system crystallized with V2O5, J. Phys. Chem. Solids, 2011, vol. 72, pp. 190–200. https://doi.org/10.1016/j.jpcs.2010.12.009

    Article  CAS  Google Scholar 

  19. Murali, A., Chakradhar, R.P.S., and Rao, J.L., Allowed and forbidden hyperfine structure of Mn2+ ions in sodium tetraborate glasses—an EPR and optical study, Phys. B(Amsterdam,Neth.), 2005, vol. 358, pp. 19–26. https://doi.org/10.1016/j.physb.2004.12.021

  20. Pierce, D.T. and Spicer, W.E., Electronic structure of amorphous Si from photoemission and optical studies, Phys. Rev. B: Solid State, 1972, vol. 5, pp. 3017–3029. https://doi.org/10.1103/PhysRevB.5.3017

    Article  Google Scholar 

  21. Bhogi, A., Vijaya Kumar, R., and Kistaiah, P., Optical absorption and FTIR studies of Cu2+ ion doped in 25Li2O–15BaO–(60 – x)B2O3 glasses, IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 360, pp. 1–6. https://doi.org/10.1088/1757-899X/360/1/012018

  22. Mott, N.F. and Davis, E.A., Electronic Processes in Non-Crystalline Materials, Oxford: Clarendon, 1971.

    Google Scholar 

  23. Dimitrov, V. and Sakka, S., Linear and nonlinear optical properties of simple oxides. II, J. Appl. Phys., 1995, vol. 79, no. 3, pp. 1741–1745. https://doi.org/10.1063/1.360963

    Article  Google Scholar 

  24. Lorentz, H.A., On the relationship between the speed of propagation of light and body density, Ann. Phys., 1880, vol. 245, no. 4, pp. 641–665. https://doi.org/10.1002/andp.18802450406

    Article  Google Scholar 

  25. Dimitrov, V. and Komatsu, T., An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength, J. Univ. Chem. Technol. Metall., 2010, vol. 45, no. 3, pp. 219–250.

    CAS  Google Scholar 

  26. Kaur, A., Khanna, A., González, F., Pesquera, C., and Chen, B., Structural, optical, dielectric and thermal properties of molybdenum tellurite and borotellurite glasses, J. Non-Cryst. Solids, 2016, vol. 444, pp. 1–10.

    Article  CAS  Google Scholar 

  27. Sindhu, S., Sanghi, S., Agarwal, A., Seth V.P., and Kishore, N., Effect of Bi2O3 content on the optical band gap, density and electrical conductivity of MO-Bi2O3–B2O3 (M = Ba, Sr) glasses, Mater. Chem. Phys., 2005, vol. 90, no. 1, pp. 83–89. https://doi.org/10.1016/j.matchemphys.2004.10.013

    Article  CAS  Google Scholar 

  28. Hammad, A.H. and Abdelghany, A., Optical and structural investigations of zinc phosphate glasses containing vanadium ions, J. Non-Cryst. Solids, 2016, vol. 433, pp. 14–19. https://doi.org/10.1016/j.jnoncrysol.2015.11.016

    Article  CAS  Google Scholar 

  29. Tarte, P., Infrared study of orthosilicates and orthogermanates: A new method for interpreting spectra, Spectrochim. Acta, 1962, vol. 18, no. 4, pp. 467–483. https://doi.org/10.1016/S0371-1951(62)80159-3

    Article  CAS  Google Scholar 

  30. Condrate, R.A., Vibrational spectra of structural units in glass, J. Non-Cryst. Solids, 1986, vol. 84, nos. 1–3, pp. 26–33. https://doi.org/10.1016/0022-3093(86)90759-3

    Article  CAS  Google Scholar 

  31. Dimitrov, V., Dimitriev, Y., and Montenero, A., IR spectra and structure of V2O5–GeO2–Bi2O3 glasses, J. Non-Cryst. Solids, 1994, vol. 180, no. 1, pp. 51–57. https://doi.org/10.1016/0022-3093(94)90396-4

    Article  CAS  Google Scholar 

  32. Iordanova, R., Dimitriev, Y., Dimitrov, V., Kassabov, S., and Klissurski, D., Glass formation and structure in the V2O5–Bi2O3–Fe2O3 glasses, J. Non-Cryst. Solids, 1996, vol. 204, no. 2, pp. 141–150. https://doi.org/10.1016/S0022-3093(96)00416-4

    Article  CAS  Google Scholar 

  33. Kamitsos, E.I. and Karakassides, M.A., Structural studies of binary and pseudo binary sodium borate glasses of high sodium content, Phys. Chem. Glasses, 1989, vol. 30, no. 1, pp. 19–26.

    CAS  Google Scholar 

  34. Kamitsos, E.I., Karakassides, M.A., and Cryssikos, G.D., Vibrational spectra of magnesium-sodium-borate glasses. 2. Raman and mid-infrared investigation of the network structure, J. Phys. Chem., 1987, vol. 91, no. 5, pp. 1073–1079. https://doi.org/10.1021/j100289a014

    Article  CAS  Google Scholar 

  35. Bachman, H.G., Ahmed, F.R., and Barnes, W.H., The crystal structure of vanadium pentoxide, Z. Kristallogr., 1961, vol. 115, nos. 1–2, pp. 110–131. https://doi.org/10.1524/zkri.1961.115.1-2.110

    Article  Google Scholar 

  36. Dhiman, R.L. Singh Kundu, V., Arora, S., and Maan, A.S., Structural and physical properties of vanadium doped copper bismuth borate glasses, AIP Conf. Proc., 2013, vol. 1512, pp. 598–599. https://doi.org/10.1063/1.4791179

  37. Iordanova, R., Dimitrov, V., Dimitriev, Y., and Klissurski, D., Glass formation and structure of glasses in the V2O5–MoO3–Bi2O3 system, J. Non-Cryst. Solids, 1994, vol. 180, no. 1, pp. 58–65. https://doi.org/10.1016/0022-3093(94)90397-2

    Article  CAS  Google Scholar 

  38. Abid, M., El-Labirou, M., and Taibi, M., Structure and DC conductivity of lead sodium ultraphosphate glasses, Mater. Sci. Eng. B, 2003, vol. 97, no. 1, pp. 20–24. https://doi.org/10.1016/S0921-5107(02)00390-2

    Article  Google Scholar 

  39. Subhadra, M. and Kistaiah, P., Characterization and optical absorption studies of VO2+ Li2O–K2O–Bi2O3–B2O3 glass system, Vibr. Spectrosc., 2012, vol. 62, no. 2, pp. 23–27. https://doi.org/10.1016/j.jallcom.2010.06.097

    Article  CAS  Google Scholar 

  40. Narayana Reddy, C., Damle, R., and Anavekar, R.V., Spectroscopic and structural studies on calcium borate glasses containing V2O5, Phys. Chem. Glasses, 2006, vol. 47, no. 1, pp. 34–40.

    Google Scholar 

  41. Kamitsos, E.I., Patsis, A.P., Karakassides, M.A., and Chryssikos, G.D., Infrared reflectance spectra of lithium borate glasses, J. Non-Cryst. Solids, 1990, vol. 126, nos. 1–2, pp. 52–67. https://doi.org/10.1016/0022-3093(90)91023-K

    Article  CAS  Google Scholar 

  42. Prakash Singh, Sh., Chakradhar, R.P.S., Rao, J.L., and Karmakar, B., EPR, FTIR, optical absorption and photoluminescence studies of Fe2O3 and CeO2 doped ZnO–Bi2O3–B2O3 glasses, J. Alloys Compd., 2010, vol. 493, nos. 1–2, pp. 256–262. https://doi.org/10.1016/j.jallcom.2009.12.075

    Article  CAS  Google Scholar 

  43. Kamitsos, E.I. and Chryssikos, G.D., Borate glass structure by Raman and infrared spectroscopies, J. Mol. Struct., 1991, vol. 247, no. 1, pp. 1–16. https://doi.org/10.1016/0022-2860(91)87058-P

    Article  CAS  Google Scholar 

  44. Sharma, G., Singh, K., Manupriya, Mohan, S., Singh, H., and Bindra, S., Effects of gamma irradiation on optical and structural properties of PbO–Bi2O3–B2O3 glasses, Radiat. Phys. Chem., 2006, vol. 75, no. 9, pp. 959–966. https://doi.org/10.1016/j.radphyschem.2006.02.008

    Article  CAS  Google Scholar 

  45. Bale, Sh., Srinivas Rao, N., and Rahaman, S., Spectroscopic studies of Bi2O3–Li2O–ZnO–B2O3 glasses, Solid State Sci., 2008, vol. 10, no. 3, pp. 326–331. https://doi.org/10.1016/j.solidstatesciences.2007.09.017

    Article  CAS  Google Scholar 

  46. Baia, L., Stefan, R., Kiefer, W., Popp, J., and Simon, S.J., Structural investigations of copper doped B2O3–Bi2O3 glasses with high bismuth oxide content, J. Non-Cryst. Solids, 2002, vol. 303, no. 3, pp. 379–386. https://doi.org/10.1016/S0022-3093(02)01042-6

    Article  CAS  Google Scholar 

  47. Doweidar, A.H. and Saddeek, Y.B., FTIR and ultrasonic investigations on modified bismuth borate glasses, J. Non-Cryst. Solids, 2009, vol. 355, no. 6, pp. 348–354. https://doi.org/10.1016/j.jnoncrysol.2008.12.008

    Article  CAS  Google Scholar 

  48. Abdelghany, A. and Hammad, A.H., Impact of vanadium ions in barium borate glass, Spectrochim. Acta, Part A, 2015, vol. 137, pp. 39–44. https://doi.org/10.1016/j.saa.2014.08.012

    Article  CAS  Google Scholar 

  49. Duffy, J.A., The electronic polarisability of oxygen in glass and the effect of composition, J. Non-Cryst. Solids, 2002, vol. 297, no 2–3, pp. 275–284. https://doi.org/10.1016/S0022-3093(01)00940-1

    Article  CAS  Google Scholar 

  50. Dimitrov, V. and Sakka, S., Electronic oxide polarizability and optical basicity of simple oxides, J. Appl. Phys., 1996, vol. 79, pp. 1736–1740. https://doi.org/10.1063/1.360962

    Article  CAS  Google Scholar 

  51. Khasa, S., Dahiya, M.S., Agarwal, A., and Chand, P., EPR, FTIR, thermal and electrical properties of VO2+ doped BaCl2–BaO–B2O3 glasses, J. Mol. Struct., 2015, vol. 1079, no. 1, pp. 15–20. https://doi.org/10.1016/j.molstruc.2014.09.012

    Article  CAS  Google Scholar 

  52. Abdelghany, A. and Hammad, A.H., Impact of vanadium ions in barium borate glass, Spectrochim. Acta, Part A, 2015, vol. 137, pp. 39–44. https://doi.org/10.1016/j.saa.2014.08.012

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors thankful to reviewers for their valuable suggestions and comments for enhancing quality of the paper. One of the authors Pavan Kumar Pothuganti thanks the management of VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad for their constant encouragement in all the times.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavan Kumar Pothuganti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavan Kumar Pothuganti, Bhogi, A., Kalimi, M.R. et al. Physical and Optical Properties of Borobismuthate Glasses Containing Vanadium Oxide. Glass Phys Chem 46, 146–154 (2020). https://doi.org/10.1134/S1087659620020078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659620020078

Keywords:

Navigation