Skip to main content
Log in

Development and Research of Electroactive Pseudocapacitor Electrode Pastes Based on MnO2

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

An electroactive material of a pseudocapacitor (PC) electrode based on highly dispersed MnO2 powders and its composites are obtained. The composition and surface morphology of these materials are investigated. The conditions for manufacturing electroactive paste from synthesized powders are determined. Technological methods are developed for the manufacture of the PC electrodes consisting of electroactive paste deposited on a conductive substrate (steel mesh). The electrochemical tests of the developed electrodes in an electrochemical cell are carried out using the method of cyclic voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. The study was performed at the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

  2. The study was performed at the Institute of Macromolecular Compounds, Russian Academy of Sciences.

  3. The study was performed at the Engineering Center of the St. Petersburg State Technological Institute (Technical University).

REFERENCES

  1. Zhang, L.L. and Zhao, X.S., Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev., 2009, vol. 38, pp. 2520–2531.

    Article  CAS  Google Scholar 

  2. Yan, J., Sumboja, A., Wang, X., and Fu, C.P., Insights on the fundamental capacitive behavior: A case study of MnO2, Small, 2014, vol. 10, pp. 3568–3578.

    Article  CAS  Google Scholar 

  3. Lv, P., Zhang, P., Feng, Y.Y., Li, Y., and Feng, W., High-performance electrochemical capacitors using electrodeposited MnO2 on carbon nanotube array grown on carbon fabric, Electrochim. Acta, 2012, vol. 78, pp. 515–523.

    Article  CAS  Google Scholar 

  4. Zhu, G.Y., He, Z., Chen, J., Zhao, J., Feng, X.M., Yanwen, M., Quli, F., Lianhui, W., and Wei, H., Highly conductive three-dimensional MnO2–carbon nanotube–graphene–Ni hybrid foam as a binder-free supercapacitor electrode, Nanoscale, 2014, vol. 6, pp. 1079–1085.

    Article  CAS  Google Scholar 

  5. Broughton, J.N. and Brett, M.J., Variations in MnO2 electrodeposition for electrochemical capacitors, Electrochim. Acta, 2005, vol. 50, pp. 4814–4819.

    Article  CAS  Google Scholar 

  6. Ivanova, A.G., Zagrebel’nyi, O.A., Tsigas, A.A., and Shilova, O.A., Synthesis and electrophysical properties of the nanooxide layer of a pseudo-capacitor, Fiz. Khim. Stekla, 2012, vol. 38, no. 6, pp. 433–439.

    Google Scholar 

  7. Subramanian, V., Zhu, H.-Wei, and Wie, B., Nanostructured manganese oxides and their composites with carbon nanotubes as electrode materials for energy storage devices, Pure Appl. Chem., 2008, no. 11, pp. 2327–2343.

  8. Tan, D.Z.W., Cheng, H., Nguyen, S.T., and Duong, H.M., Controlled synthesis of MnO2/CNT nanocomposites for supercapacitor applications, Mater. Technol., 2014, vol. 29, no. A2, pp. 107A–113A.

    Article  Google Scholar 

  9. Wang, K., Gao, S., Du, Z., Yuan, A., Lu, W., and Chen, L., MnO2-carbon nanotube composite for high-areal-density supercapacitors with high rate performance, J. Power Sources, 2016, vol. 305, pp. 30–36.

    Article  CAS  Google Scholar 

  10. Wang, J.-G., Yang, Y., Huang, Z.-H., and Kang, F., Synthesis and electrochemical performance of MnO2/CNTs-embedded carbon nanofibers nanocomposites for supercapacitors, Electrochim. Acta, 2012, vol. 75, pp. 213–219.

    Article  CAS  Google Scholar 

  11. Daniel, B., Thierry, B., and Jerey, W.L., Manganese oxides: Battery materials make the leap to electrochemical capacitors, Electrochem. Soc. Interface, 2008, vol. 17, pp. 49–52.

    Google Scholar 

  12. Broughton, J.N. and Brett, M.J., Investigation of thin sputtered Mn films for electrochemical capacitors, Electrochim. Acta, 2004, vol. 49, pp. 4439–4446.

    Article  CAS  Google Scholar 

  13. Yang, J., Lian, L., Ruan, H., Xie, F., and Wei, M., Nanostructured porous MnO2 on Ni foam substrate with a high mass loading via a CV electrodeposition route for supercapacitor application, Electrochim. Acta, 2014, vol. 136, pp. 189–194.

    Article  CAS  Google Scholar 

  14. Reddy, R.N. and Reddy, R.G., Sol-gel MnO2 as an electrode material for electrochemical capacitors, J. Power Sources, 2003, vol. 124, no. 1, pp. 330–337.

    Article  CAS  Google Scholar 

  15. Xu, M., Kong, L., Zhou, W., and Li, H., Hydrothermal synthesis and pseudocapacitance properties of α‑MnO2 hollow spheres and hollow urchins, J. Phys. Chem., 2007, vol. 111, no. 51, pp. 19141–19147.

    CAS  Google Scholar 

  16. Li, L., Hu, Z.A., An, N., Yang, Y.Y., Li, Z.M., and Wu, H.Y.J., Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability, Phys. Chem. C, 2014, vol. 118, no. 40, pp. 22865–22872.

    Article  CAS  Google Scholar 

  17. Shi, K., Ren, M., and Zhitomirsky, I., Activated carbon-coated carbon nanotubes for energy storage in supercapacitors and capacitive water purification, ACS Sustainable Chem. Eng., 2014, vol. 2, pp. 1289–1298.

    Article  CAS  Google Scholar 

  18. Feng, X., Yan, Z., Chen, N., Zhang, Y., Ma, Y., Liu, X., Fan, Q., Wang, L., and Huang, W., The synthesis of shape-controlled MnO2/graphene composites via a facile one-step hydrothermal method and their application in supercapacitors, J. Mater. Chem. A, 2013, vol. 1, pp. 12818–12825.

  19. Zhao, Y., Ran, W., He, J., Huang, Y., Liu, Z., Liu, W., Tang, Y., Zhang, L., Gao, D., and Gao, F., High-performance asymmetric supercapacitors based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability, Small, 2015, vol. 11, pp. 1310–1319.

    Article  CAS  Google Scholar 

  20. Sychev, M.M., Kislotno-osnovnye kharakteristiki poverkhnosti tverdykh tel i upravlenie svoistvami materialov i kompozitov (Acid-Base Characteristics of the Surface of Solids and Control of the Properties of Materials and Composites), St. Petersburg: Khimizdat, 2016.

  21. Nechiporenko, A.P., Donorno-aktseptornye svoistva poverkhnosti tverdofaznykh sistem. Indikatornyi metod (Donor-Acceptor Surface Properties of Solid-Phase Systems. Indicator Method), St. Petersburg: Lan’, 2017.

  22. Hashem, A.M., Abuzeid, H.M., Abdel-Latif, A.M., Ehrenberg, H., Indris, S., Mauger, A., Groult, H., and Julien, C.M., MnO2 nano-rods prepared by redox reaction as cathodes in lithium batteries, ECS Trans., 2013, vol. 50, pp. 125–130.

    Article  Google Scholar 

  23. Tucureanu, V., Matei, A., and Avram, A.M., FTIR spectroscopy for carbon family study, Crit. Rev. Anal. Chem., 2016, vol. 46, no. 6, pp. 502–520.

    Article  CAS  Google Scholar 

  24. Ramirez-Castro, C., Crosnier, O., Athouёl, L., Retoux, R., Bélanger, D., and Brousse, T., Electrochemical performance of carbon/MnO2 nanocomposites prepared via molecular bridging as supercapacitor electrode materials, J. Electrochem. Soc., 2015, vol. 162, no. 5, pp. A5179–A5184.

    Article  CAS  Google Scholar 

  25. Shin, J., Shin, D., Hwang, H., Yeo, T., Park, S., and Choi, W., One-step transformation of MnO2 into MnO2-x carbon nanostructures for high-performance supercapacitors using structure-guided combustion waves, J. Mater. Chem. A, 2017, vol. 5, pp. 13 488–13 498.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Ivanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, A.G., Karasev, L.V., Masalovich, M.S. et al. Development and Research of Electroactive Pseudocapacitor Electrode Pastes Based on MnO2. Glass Phys Chem 46, 96–101 (2020). https://doi.org/10.1134/S1087659620010101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659620010101

Keywords:

Navigation