Skip to main content
Log in

A fresh look at the influence of gravity on the quantum Hall effect

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study the quantum Hall effect inside a gravitational field. First, we review the influence of the gravitational field of the Earth on the quantum Hall effect. Taking the gravitational field of the Earth to be uniform along the vertical direction, we compute the affected quantized Hall resistivity. Then, we investigate how the gravitational field modifies the Landau levels of a particle moving between two massive hemispheres in the presence of a constant and uniform magnetic field perpendicular to the plane of motion. We find that the familiar degeneracy of the Landau levels is removed and the spacing between the latter becomes dependent on the mass density of the hemispheres and on the gravitational constant G. We use this result to show that the quantum Hall effect in a thin conductor, sandwiched between two massive hemispheres, should yield a slightly different variation of the Hall resistivity with the applied magnetic field. We then argue that the well-known problem of the gravitationally induced electric field, that might a priori be thought to hinder the effect of gravity, has actually a beneficial role as it amplifies the latter. We finally discuss whether there is a possibility of using the quantum Hall effect to probe the inverse-square law of gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Many thanks to Valerio Faraoni for suggesting to use our local centrifuge.

References

  1. K. von Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494 (1980). https://doi.org/10.1103/PhysRevLett.45.494

    Article  ADS  Google Scholar 

  2. D.C. Tsui, H.L. Stormer, A.C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559 (1982). https://doi.org/10.1103/PhysRevLett.48.1559

    Article  ADS  Google Scholar 

  3. A.H. MacDonald, T.M. Rice, W.F. Brinkman, Hall voltage and current distributions in an ideal two-dimensional system. Phys. Rev. B 28, 3648(R) (1983). https://doi.org/10.1103/PhysRevB.28.3648

    Article  ADS  Google Scholar 

  4. R.E. Prange, Effects of imperfection and disorder, in The Quantum Hall Effect, 2nd edn., ed. by R.E. Prange, S.M. Girvin (Springer, New York, 1990)

    Chapter  Google Scholar 

  5. A.C. Montes de Oca, D. Martinez-Pedrera, Role of impurities in stabilizing quantum Hall effect plateaus. Phys. Rev. B 67, 245310 (2003). https://doi.org/10.1103/PhysRevB.67.245310

    Article  ADS  Google Scholar 

  6. D.J. Thouless, Topological considerations, in The Quantum Hall Effect, 2nd edn., ed. by R.E. Prange, S.M. Girvin (Springer, New York, 1990)

    MATH  Google Scholar 

  7. B. Jeckelmann, B. Jeanneret, The quantum Hall effect as an electrical resistance standard. Rep. Prog. Phys. 64, 1603 (2001). https://doi.org/10.1088/0034-4885/64/12/201

    Article  ADS  Google Scholar 

  8. J. Weis, K. von Klitzing, Metrology and microscopic picture of the integer quantum Hall effect. Phiols. Trans. R. Soc. A 369, 3954 (2011). https://doi.org/10.1098/rsta.2011.0198

    Article  ADS  Google Scholar 

  9. K. von Klitzing, Quantum Hall effect: discovery and application. Annu. Rev. Condens. Matter Phys. 8, 13 (2017). https://doi.org/10.1146/annurev-conmatphys-031016-025148

    Article  ADS  Google Scholar 

  10. F.W. Hehl, Y.N. Obukhov, B. Rosenow, Is the Quantum Hall Effect Influenced by the Gravitational Field. Phys. Rev. Lett. 93, 096804 (2004). https://doi.org/10.1103/PhysRevLett.93.096804

    Article  ADS  Google Scholar 

  11. F.W. Hehl, W.-T. Ni, Inertial effects of a Dirac particle. Phys. Rev. D 42, 2045 (1990). https://doi.org/10.1103/PhysRevD.42.2045

    Article  ADS  Google Scholar 

  12. Y.N. Obukhov, Spin, Gravity, and Inertia. Phys. Rev. Lett. 86, 192 (2001). https://doi.org/10.1103/PhysRevLett.86.192

    Article  ADS  MathSciNet  Google Scholar 

  13. F. Hammad, A. Landry, A simple superconductor quantum interference device for testing gravity. Mod. Phys. Lett. A (in press)

  14. V.V. Nesvizhevsky et al., Study of the neutron quantum states in the gravity field. Nature 415, 297 (2002)

    Article  ADS  Google Scholar 

  15. V.V. Nesvizhevsky et al., Measurement of quantum states of neutrons in the Earth’s gravitational field. Phys. Rev. D 67, 102002 (2003). https://doi.org/10.1103/PhysRevD.67.102002

    Article  ADS  Google Scholar 

  16. V.V. Nesvizhevsky et al., Study of the neutron quantum states in the gravity field. Eur. Phys. J. C 40, 479 (2005). https://doi.org/10.1140/epjc/s2005-02135-y

    Article  ADS  Google Scholar 

  17. A. Landry, F. Hammad, Landau levels in a gravitational field: The Schwarzschild spacetime case. arXiv:1909.01827

  18. F. Hammad, A. Landry, Landau levels in a gravitational field: The Levi-Civita and Kerr spacetimes case. Eur. Phys. J. Plus 135, 90 (2020). https://doi.org/10.1140/epjp/s13360-020-00108-1

    Article  Google Scholar 

  19. L.I. Schiff, M.V. Barnhill, Gravitation-induced electric field near a metal. Phys. Rev. 151, 1067 (1966). https://doi.org/10.1103/PhysRev.151.1067

    Article  ADS  Google Scholar 

  20. F.C. Witteborn, W.M. Fairbank, Experimental comparison of the gravitational force on freely falling electrons and metallic electrons. Phys. Rev. Lett. 19, 1049 (1967). https://doi.org/10.1103/PhysRevLett.19.1049

    Article  ADS  Google Scholar 

  21. A.J. Dessler, F.C. Michel, H.E. Rorschach, G.T. Trammell, Gravitationally induced electric fields in conductors. Phys. Rev. 168, 737 (1968). https://doi.org/10.1103/PhysRev.168.737

    Article  ADS  Google Scholar 

  22. T.W. Darling, F. Rossi, G.I. Opat, G.F. Moorhead, The fall of charged particles under gravity: a study of experimental problems. Rev. Mod. Phys. 64, 237 (1992). https://doi.org/10.1103/RevModPhys.64.237

    Article  ADS  Google Scholar 

  23. H. Dittus, C. Lämmerzahl, H. Selig, The fall of charged particles under gravity: a study of experimental problems. Gen. Relativ. Gravit. 36, 571 (2004). https://doi.org/10.1023/B:GERG.0000010731.31046.67

    Article  ADS  MATH  Google Scholar 

  24. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, 2nd edn. (Pergamon Press, Oxford, 1965)

    MATH  Google Scholar 

  25. W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd edn. (Springer, Berlin, 1966)

    Book  Google Scholar 

  26. H. Buchholz, The Confluent Hypergeometric Function, with Special Emphasis on its Applications (Springer, Berlin, 1969)

    Book  Google Scholar 

  27. P.J. Mohr, D.B. Newell, B.N. Taylor, CODATA recommended values of the fundamental physical constants. Rev. Mod. Phys. 88, 035009 (2016). https://doi.org/10.1103/RevModPhys.88.035009

    Article  ADS  Google Scholar 

  28. R.G. Sharma, Superconductivity: Basics and Applications to Magnets (Springer, New York, 2015)

    Book  Google Scholar 

  29. A.M.M. Pruisken, Universal singularities in the integral quantum hall effect. Phys. Rev. Lett. 61, 1297 (1988). https://doi.org/10.1103/PhysRevLett.61.1297

    Article  ADS  Google Scholar 

  30. H.P. Wei, D.C. Tsui, M.A. Paalanen, A.M.M. Pruisken, Experiments on delocalization and university in the integral quantum Hall effect. Phys. Rev. Lett. 61, 1294 (1988). https://doi.org/10.1103/PhysRevLett.61.1294

    Article  ADS  Google Scholar 

  31. S. Koch, R.J. Haug, Kv Klitzing, K. Ploog, Size-dependent analysis of the metal-insulator transition in the integral quantum Hall effect. Phys. Rev. Lett. 67, 883 (1991). https://doi.org/10.1103/PhysRevLett.67.883

    Article  ADS  Google Scholar 

  32. A.J.M. Giesbers et al., Scaling of the quantum Hall plateau-plateau transition in graphene. Phys. Rev. B 80, 241411(R) (2009). https://doi.org/10.1103/PhysRevB.80.241411

    Article  ADS  Google Scholar 

  33. S.V. Gudina et al., Scaling laws under quantum Hall effect for a smooth disorder potential. Low Temp. Phys. 45, 176 (2019). https://doi.org/10.1063/1.5086407

    Article  ADS  Google Scholar 

  34. B. Huckestein, Scaling theory of the integer quantum Hall effect. Rev. Mod. Phys. 67, 357 (1995). https://doi.org/10.1103/RevModPhys.67.357

    Article  ADS  Google Scholar 

  35. B. Huckestein, Quantum Hall Effect at Low Magnetic Fields. Phys. Rev. Lett. 84, 3141 (2000). https://doi.org/10.1103/PhysRevLett.84.3141

    Article  ADS  Google Scholar 

  36. C. Kiefer, C. Weber, On the interaction of mesoscopic quantum systems with gravity. Ann. Phys. 14, 253 (2005). https://doi.org/10.1002/andp.200410119

    Article  MathSciNet  MATH  Google Scholar 

  37. G.V. Kulin, A.I. Frank, S.V. Goryunov, D.V. Kustov, P. Geltenbort, M. Jentschel, A.N. Strepetov, V.A. Bushuev, Spectrometer for new gravitational experiment with UCN. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 792, 38 (2015)

    Article  ADS  Google Scholar 

  38. H. Abele, Precision experiments with cold and ultra-cold neutrons. Hyperfine Interact 237, 155 (2016). https://doi.org/10.1007/s10751-016-1352-z

    Article  ADS  Google Scholar 

  39. G.W. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, M.A. Kasevich, Testing gravity with cold-atom interferometers. Phys. Rev. A 91, 033629 (2015). https://doi.org/10.1103/PhysRevA.91.033629

    Article  ADS  Google Scholar 

  40. F. Hammad, A. Landry, K. Mathieu, On the possibility of testing the inverse-square law and gravitomagnetism using quantum interference. arXiv:1910.13814v2

  41. J. Yin et al., Dimensional reduction, quantum Hall effect and layer parity in graphite films. Nat. Phys. 15, 437 (2019)

    Article  Google Scholar 

  42. H. Lass, L. Blitzer, The gravitational potential due to uniform disks and rings. Celest. Mech. 30, 225 (1983). https://doi.org/10.1007/BF01232189

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referee for his/her comments that improved the clarity and quality of our presentation. This work is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-2017-05388).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hammad.

The gravitational potential inside a full disk of radius R and thickness a

The gravitational potential inside a full disk of radius R and thickness a

1.1 Newtonian potential \(V(r)=-GM/r\)

Let us denote the Newtonian gravitational potential between the two hemispheres of Sect. 3 at any point x away from the center by \(V_{H}^N(x)\). Then, we have \(V_H^N(x)=V_S^N(x)-V_D^N(x)\). Here, \(V_S^N(x)\) is the Newtonian gravitational potential at any distance x from the center of a full sphere of radius R and \(V_D^N(x)\) is the Newtonian gravitational potential at the distance x from the center of a full disk of thickness 2a and radius R. We are going to give here the detailed calculations that yield \(V_D^N(x)\). The calculation of \(V_S^N(x)\) has been done in detail in Ref.  [40], so we are only displaying here the final expression of that potential. It is given by,

$$\begin{aligned} V_S^N(x)=-2\pi G\rho \left( R^2-\frac{x^2}{3}\right) . \end{aligned}$$
(29)

The Newtonian gravitational potential at a distance x from the center of a full disk of thickness 2a, of radius R and of mass density \(\rho \), can be found by integrating first the infinitesimal contributions of the mass elements \(r\,\mathrm{d}\phi \,\mathrm{d}r\,\mathrm{d}z\) over the thickness 2a. These contributions should, in turn, be integrated over the whole disk by following the same strategy as the one adopted in Ref.  [42]. We find,

$$\begin{aligned} V_D^N(x)&=-4G\rho \int _0^\pi \int _0^{r(\phi )}\int _0^{a}\frac{r}{\sqrt{r^2+z^2}}\,\mathrm{d}\phi \,\mathrm{d}r\,\mathrm{d}z\nonumber \\&=-2G\rho \int _0^\pi \Bigg [a\sqrt{r^2(\phi )+a^2}+r^2(\phi ) \ln \left( \frac{\sqrt{r^2(\phi )+a^2}+a}{r(\phi )}\right) -a^2\Bigg ]\mathrm{d}\phi . \end{aligned}$$
(30)

In the second step we have integrated over the rest of the disk from \(r=0\) to \(r(\phi )=x\cos \phi +\sqrt{R^2-x^2\sin ^2\phi }\) [42]. For small distances x away from the center of the disk and for a small thickness 2a of the disk compared to the radius R of the latter, we may, in turn, expand the integrand in powers of the ratios x/R and a/R. This allows us then to easily integrate over the variable \(\phi \). Keeping only the lower orders in the expansion, we find the following result for the Newtonian gravitational potential inside the full disk at a distance x from its center:

$$\begin{aligned} V_D^N(x)=\frac{\pi G\rho a}{R}x^2+{\mathcal {O}}\left( \frac{x^4}{R^4},\frac{x^2a^2}{R^4}\right) +\mathrm{const}. \end{aligned}$$
(31)

We have discarded here orders four and higher in x/R and a/R. Also, we have gathered all the constant terms inside the last term. Using this result, we can now find the Newtonian gravitational potential between the two hemispheres at a distance x from the center by using Eq. (29) and computing \(V_H^N(x)=V_S^N(x)-V_D^N(x)\). We thus find the following result:

$$\begin{aligned} V_H^N(x)=\frac{2\pi G\rho }{3}\left( 1-\frac{3 a}{2R}\right) x^2+{\mathcal {O}}\left( \frac{x^4}{R^4},\frac{x^2a^2}{R^4}\right) +\mathrm{const}. \end{aligned}$$
(32)

1.2 Yukawa-like correction \(V^{\mathrm{Y}}(r)=-\frac{1}{r}GM\alpha e^{-r/\lambda }\).

The gravitational potential inside a full sphere of radius R and mass density \(\rho \) due to the Yukawa-like correction term has already been found in Ref.  [40]. The result is

$$\begin{aligned} V_S^{Y}(x)= & {} -2\pi G\rho \Bigg [\alpha \lambda ^2\left( 2-e^{-\frac{R-x}{\lambda }}-e^{-\frac{R+x}{\lambda }} \right) \nonumber \\&+\frac{\alpha \lambda ^2}{x}\bigg ((R+x+\lambda )e^{-\frac{R+x}{\lambda }} -(R-x+\lambda )e^{-\frac{R-x}{\lambda }}\Bigg )\Bigg ]. \end{aligned}$$
(33)

This potential cannot be of any use in the form given here, so we need to expand it in powers of \(x/\lambda \). This expansion would be valid provided, of course, that \(x<\lambda \). The result is

$$\begin{aligned} V_S^{Y}(x)&=e^{-R/\lambda }\left[ \frac{2\pi GR\rho \alpha }{3\lambda }x^2+{\mathcal {O}}\left( \frac{x^4}{R^4}\right) \right] +\mathrm{const}. \end{aligned}$$
(34)

We have kept here also only the terms up to the second order in \(x/\lambda \) and gathered all the constant terms inside the last constant term.

Let us now denote by \(V_D^{\mathrm{Y}}(x)\) the Yukawa-like correction to the gravitational potential at a distance x from the center of a full uniform disk of radius R and of thickness 2a, having the uniform mass density \(\rho \). Integrating over the disk as done for the Newtonian potential, we get,

$$\begin{aligned} V_D^Y(x)&=-4G\rho \alpha \int _0^\pi \int _0^{r(\phi )}\int _0^{a} \frac{re^{-\sqrt{r^2+z^2}/\lambda }}{\sqrt{r^2+z^2}}\,\mathrm{d}\phi \,\mathrm{d}r\,\mathrm{d}z\nonumber \\&\approx e^{-\frac{\sqrt{R^2+a^2}}{\lambda }}\left[ \frac{\pi G\rho a\alpha }{R}x^2\!+\!{\mathcal {O}}\!\left( \frac{x^4}{R^4}, \frac{x^2a^2}{R^4}\right) \!+\!\mathrm{const}.\right] \end{aligned}$$
(35)

Note that this is the lowest limit of the integral. Indeed, given that the integral in the first line of Eq. (35) does not admit any analytical expression, we have to approximate the exponential inside the integrand in order to get a rough estimate of such an integral. Then we integrated over the whole disk as we did above for the Newtonian potential by assuming that \(x\ll R\). Owing to the smallness of a, we clearly see that the contribution of this lower limit of \(V_D^{Y}(x)\) is very small. Finally, then, using Eqs. (32) and (34), the gravitational potential \(V_H^{N+Y}(x)\) that takes into account the Yukawa-like correction at any distance x from the center between two hemispheres is found, up to the first two lowest orders, as follows:

$$\begin{aligned} V_H^{N+Y}(x)\approx V_H^N(x)+V_S^{Y}(x)\approx \frac{2\pi G\rho }{3}\left( 1-\frac{3 a}{2R}+\frac{\alpha R}{\lambda }e^{-R/\lambda }\right) x^2+\mathrm{const}. \end{aligned}$$
(36)

Note that this approximation is valid provided that \(x^4/R^4\ll \alpha R/\lambda e^{R/\lambda }\). For this to be the case, one needs of course to choose the allowed range for x according to one’s estimate of \(\lambda \) and \(\alpha \).

1.3 Power-law correction \(V^{n}(r)=-GM\,r_0^n/r^{n+1}\).

Let us denote by \(V_D^{n}(x)\) the power-law correction to the gravitational potential at a distance x from the center of a full uniform disk of radius R and thickness 2a, having the uniform mass density \(\rho \).

1.3.1 Case \(n=1\)

Only for the case \(n=1\) do we have a converging potential inside the sphere [40]. Therefore, we only focus here on that case. The gravitational potential correction at a distance x from the center of a sphere of radius R and mass density \(\rho \) for such a case has already been computed in detail in Ref.  [40]. Therefore, we just pick up here the result found there and expand in powers of x/R. We find,

$$\begin{aligned} V_S^{n=1}(x)&=-2\pi G\rho r_0\left[ R+\frac{R^2-x^2}{2x} \ln \frac{R+x}{R-x}\right] \nonumber \\&=-4\pi G\rho r_0R\left( 1-\frac{x^2}{3R^2}\right) +{\mathcal {O}}\left( \frac{x^4}{R^4}\right) +\mathrm{const}. \end{aligned}$$
(37)

On the other hand, we should integrate over the disk of radius R and thickness 2a as done for the Newtonian potential. We get,

$$\begin{aligned} V_D^{n=1}(x)&=-4G\rho r_0\int _0^\pi \int _0^{r(\phi )}\int _0^{a}\,\frac{r}{r^2+z^2}\,\mathrm{d}\phi \,\mathrm{d}r\,\mathrm{d}z\nonumber \\&=-2G\rho r_0 \int _0^\pi \Bigg [a\ln \left( \frac{a^2+r^2(\phi )}{a^2}\right) +r(\phi )\tan ^{-1}\left( \frac{a}{r(\phi )}\right) \Bigg ]\mathrm{d}\phi \nonumber \\&=\frac{2\pi G\rho r_0a}{R^2}\,x^2+{\mathcal {O}}\left( \frac{x^4}{R^4},\frac{x^2a^2}{R^4}\right) +\mathrm{const}. \end{aligned}$$
(38)

As the integral in the second line does not again admit any analytical solution, the best we could do is expand the integrand in powers of x/R and a/R and then integrate for the single variable \(\phi \). The above result is thus valid only for \(x\ll R\) as well as \(a\ll R\). Therefore, the total gravitational potential between the two hemispheres reads,

$$\begin{aligned} V_H^{N+(n=1)}(x)=V_H^{N}+V_S^{n=1}-V_D^{n=1}\approx \frac{2\pi G\rho }{3}\left( 1-\frac{3 a}{2R}\right) \left( 1+\frac{2r_0}{R}\right) x^2+\mathrm{const}. \end{aligned}$$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammad, F., Landry, A. & Mathieu, K. A fresh look at the influence of gravity on the quantum Hall effect. Eur. Phys. J. Plus 135, 449 (2020). https://doi.org/10.1140/epjp/s13360-020-00481-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00481-x

Navigation