Skip to main content
Log in

Optical rectification coefficient of GaAs/AlxGa1−xAs Thue–Morse multiple quantum wells

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present work, we numerically investigate the optical properties of GaAs/AlxGa1−xAs Thue–Morse multiple-quantum-well systems (TM-MQWs) in the presence of an external electric field. We study the effects of the layers arrangements, total system length, number of layers and composition parameter x on the optical rectification coefficient of the TM-MQWs. We also consider three structural cases within which the system can be fabricated by repeating two, three or four composition parameters x1, x2, x3 and x4 in the adjacent layers. The most tunable ORC amplitude is due to the systems containing four different composition parameters and least tunable one is the systems which contain two different composition parameters. By increasing the number of layers, the ORC peak position periodically redshifts and blueshifts. We also show that by using the number of layers, total system length and composition parameter x, the ORC peak amplitudes are greatly tunable in a considerably large interval. This fact shows that the Thue–Morse MQWs are suitable candidates for optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)

    ADS  Google Scholar 

  2. Y. Guoyxk, B.L. Guyz, Z.Q. Lix, J.L. Zhuyx, Y. Kawazoex, Transport properties of electrons in quasiperiodic magnetic Superlattices. J. Phys. Condens. Matter 10, 1549–1561 (1998)

    ADS  Google Scholar 

  3. R.W. Peng, A. Hu, S.S. Jiang, C.S. Zhang, D. Feng, Structural characterization of three-component Fibonacci Ta/Al multilayer films. Phys. Rev. B 46, 7816–7820 (1992)

    ADS  Google Scholar 

  4. S.E. Burkov, B.E.C. Koltenbah, L.W. Bruch, Phonon localization in one-dimensional quasiperiodic chains. Phys. Rev. B 53, 14179–14184 (1996)

    ADS  Google Scholar 

  5. F.R. Villatoro, J.A. Monsoriu, Tunneling in quantum superlattices with variable lacunarity. Phys. Lett. A 372, 3801–3807 (2008)

    ADS  MATH  Google Scholar 

  6. D.A. Contreras Solorio, R.A. Reyes Villagrana, J. Madrigal Melchor, X.I. Saldana, E. Lopez Cruz, Revista Mexicana de Física S 53, 139–142 (2007)

    Google Scholar 

  7. M. Kolar, F. Nori, Trace maps of general substitutional sequences. Phys. Rev. B 42, 1062–1065 (1990)

    ADS  MathSciNet  Google Scholar 

  8. R. Merlin, K. Bajema, J. Nagle, K. Ploog, Raman scattering by acoustic phonons and structural properties of Fibonacci, Thue-Morse and random superlattices. J. Phys. Colloq. 48, 503–506 (1987)

    Google Scholar 

  9. M. Severin, R. Riklund, Coexistence of localized, critical, and extended states in a one-dimensional substitutional non-Fibonaccian quasicrystal: a multifractal analysis. Phys. Rev. B 39, 10362–10365 (1989)

    ADS  Google Scholar 

  10. E. Maciá, Aperiodic Structures in Condensed Matter: Fundamentals and Applications (CRC Press, Boca Raton, 2009), p. 198

    MATH  Google Scholar 

  11. P.W. Mauriz, E.L. Albuquerque, M.S. Vasconcelos, Specific heat properties of polariton modes in quasicrystals. Phys. Rev. B 63, 184203–1842036 (2001)

    ADS  Google Scholar 

  12. C.L. Roy, C. Basu, A. Khan, Density of states of generalized Thue–Morse lattice and related issues. Phys. Lett. A 198, 424–432 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  13. E. Macia, F. Dominguez-Adame, Can fractal-like spectra be experimentally observed in aperiodic superlattices? Semicond. Sci. Technol. 11, 1041–1045 (1996)

    ADS  Google Scholar 

  14. S. Chattopadhyay, A. Chakrabarti, Hidden dimers and their effect on the optical and electronic transmission in Thue–Morse aperiodic structures. J. Phys. Condens. Matter 12, 5681–5689 (2000)

    ADS  Google Scholar 

  15. G. Zhang, X. Yang, Y. Li, H. Song, Optical transmission through multi-component generalized Thue–Morse superlattices. Phys. B 405, 3605–3610 (2010)

    ADS  Google Scholar 

  16. S. Mukhopadhyay, P. Panchadhyayee, R. Biswas, C. Sinha, Influence of Al-concentration on the current density in GaAs/AlcGa1-cAs generalized Thue–Morse superlattices. Eur. Phys. J. B 80, 477–483 (2011)

    ADS  Google Scholar 

  17. F. Dominguez-Adame, E. Macili, Incoherent exciton trapping in self-similar aperiodic lattices. Phys. Rev. B 51, 878–882 (1994)

    ADS  Google Scholar 

  18. E. Macia, F. Dominguez-Adamet, Exciton optical absorption in self-similar aperiodic lattices. Phys. Rev. B 50, 16856–16860 (1994)

    ADS  Google Scholar 

  19. W.J. Hsueh, C.H. Chang, C.T. Lin, Exciton photoluminescence in resonant quasi-periodic Thue–Morse quantum wells. Opt. Lett. 39, 489–492 (2014)

    ADS  Google Scholar 

  20. Y. Li, R.W. Penga, G.J. Jin, M. Wang, X.Q. Huang, A. Hu, S.S. Jiang, Persistent currents in one-dimensional aperiodic mesoscopic rings. Eur. Phys. J. B 25, 497–503 (2002)

    ADS  Google Scholar 

  21. M.S. Vasconcelos, E.L. Albuquerque, Plasmon-polariton fractal spectra in quasiperiodic multilayers. Phys. Rev. B 57, 2826–2833 (1997)

    ADS  Google Scholar 

  22. V. Agarwal, J.A. Soto-Urueta, D. Becerra, M.E. Mora-Ramos, Light propagation in poly type Thue–Morse structures made of porous silicon. Photon. Nanostruct. Fund. Appl. 3, 155–161 (2005)

    ADS  Google Scholar 

  23. R. Pelster, V. Gasparian, G. Nimtz, Propagation of plane waves and of waveguide modes in quasiperiodic dielectric heterostructures. Phys. Rev. E 55, 7645–7655 (1997)

    ADS  Google Scholar 

  24. H. Lei, J. Chen, G. Nouet, S. Feng, Q. Gong, X. Jiang, Photonic band gap structures in the Thue–Morse lattice. Phys. Rev. B 75, 205109–205109-10 (2007)

    ADS  Google Scholar 

  25. L. Wang, X. Yang, T. Chen, Second harmonic generation in generalized Thue–Morse ferroelectric superlattices. Phys. B 404, 3425–3430 (2009)

    ADS  Google Scholar 

  26. L.L. Cherian, J. Mathai, S. Gangopadhyay, X. Yang, J. Gao, Spontaneous emission rate enhancement with aperiodic Thue–Morse multilayer. Sci. Rep. 9, 8473 (2019)

    ADS  Google Scholar 

  27. V. Ferrando, F. Gimenez, W.D. Furlan, J.A. Monsoriu, Bifractal focusing and imaging properties of Thue–Morse Zone plates. Opt. Express 23, 19846–19853 (2015)

    ADS  Google Scholar 

  28. E. Lazo, E. Saavedra, F. Humire, C. Castro, F. Cortes-Cortes, Localization properties of transmission lines with generalized Thue–Morse distribution of inductances. Eur. Phys. J. B 88, 216 (2015)

    ADS  MathSciNet  Google Scholar 

  29. F. Reyes Gómez, N. Porras-Montenegro, O.N. Oliveira, J.R. Mejía-Salazar, Second harmonic generation in the plasmon-polariton gap of quasiperiodic metamaterial photonic superlattices. Phys. Rev. B 98, 075406 (2018)

    ADS  Google Scholar 

  30. Z. Cheng, R. Savit, R. Merlin, Structure and electronic properties of Thue–Morse lattices. Phys. Rev. B 37, 4375–4382 (1988)

    ADS  Google Scholar 

  31. E. Bombieri, J.E. Taylor, Which distributions of matter diffract? An initial investigation. J. Phys. Colloq. 47(3), 19–28 (1986)

    MathSciNet  MATH  Google Scholar 

  32. V. Ferrando, A. Coves, P. Andres, J.A. Monsoriu, Guiding properties of a photonic quasicrystal fiber based on the Thue–Morse sequence. IEEE Photon. Technol. Lett. 27, 1903–1906 (2015)

    ADS  Google Scholar 

  33. R. Talebzadeh, M. Bavaghar, Filtering properties of Thue–Morse nano-photonic crystals containing” high-temperature superconductor. Physica C (Amsterdam, Neth.) 548, 119–122 (2018)

    ADS  Google Scholar 

  34. J. Wu, X. Yang, Ultrastrong extraordinary transmission and reflection in PT-symmetric Thue–Morse optical waveguide networks. Opt. Express 25, 27724–27735 (2017)

    ADS  Google Scholar 

  35. X.Y. Jiang, Y.G. Zhang, S.L. Feng, K.C. Huang, Y.H. Yi, J.D. Joannopoulos, Photonic band gaps and localization in the Thue–Morse structures. Appl. Phys. Lett. 86, 201110 (2005)

    ADS  Google Scholar 

  36. L. Moretti, I. Rea, L. Rotiroti, I. Rendina, C. Abbate, A. Marino, L.D. Stefano, Photonic band gaps analysis of Thue–Morse multilayers made of porous silicon. Opt. Express 14, 6264–6272 (2006)

    ADS  Google Scholar 

  37. E. Liviotti, A study of the structure factor of Thue–Morse and period-doubling chains by wavelet analysis. J. Phys. Condens. Matter 8, 5007–5015 (1996)

    ADS  Google Scholar 

  38. M. Kolar, M.K. Ali, F. Nori, Generalized Thue–Morse chains and their physical properties. Phys. Rev. B 43, 1034–1047 (1991)

    ADS  Google Scholar 

  39. B. Li, K.X. Guo, Z.L. Liu, Y.B. Zheng, Nonlinear optical rectification in parabolic quantum dots in the presence of electric and magnetic fields. Phys. Lett. A 372, 1337–1340 (2008)

    ADS  MATH  Google Scholar 

  40. Z.H. Zhang, K. Xian Guo, B. Chen, R.Z. Wang, M.W. Kang, Nonlinear optical rectification in cubical quantum dots. Physica B 404, 2332–2335 (2009)

    ADS  Google Scholar 

  41. G. Rezaei, B. Vaseghi, R. Khordad, H. Azadi Kenary, Optical rectification coefficient of a two-dimensional quantum pseudodot system. Physica E 43, 1853–1856 (2011)

    ADS  Google Scholar 

  42. G. Liu, K. Guo, Z. Zhang, Nonlinear optical rectification in spherical dome semiconductor nanoshells. Physica B 503, 81–85 (2016)

    ADS  Google Scholar 

  43. R. Ben Mahrsia, M. Choubani, L. Bouzaiene, H. Maaref, Nonlinear optical rectification in a vertically coupled lens-shaped InAs/GaAs quantum dots with wetting layers under hydrostatic pressure and temperature. J. Alloys Compd. 671, 200–207 (2016)

    Google Scholar 

  44. R.Z. Wang, K.X. Guo, Z.L. Liu, B. Chen, Y.B. Zheng, Nonlinear optical rectification in asymmetric coupled quantum wells. Phys. Lett. A 373, 795–798 (2009)

    ADS  MATH  Google Scholar 

  45. M.J. Karimi, A. Keshavarz, G. Rezaei, Optical rectification and second harmonic generation of finite and infinite semi-parabolic quantum wells. J. Comput. Theor. Nanosci. 8, 1–6 (2011)

    Google Scholar 

  46. B. Xiao, K. Guo, S. Mou, Z. Zhang, Polaron effects on the optical rectification in asymmetrical semi-exponential quantum wells. Superlattices Microstruct. 69, 122–128 (2014)

    ADS  Google Scholar 

  47. H. Hassanabadi, G. Liu, L. Lu, Nonlinear optical rectification and the second-harmonic generation in semi-parabolic and semi-inverse squared quantum wells. Solid State Commun. 152, 1761–1766 (2012)

    ADS  Google Scholar 

  48. F. Ungan, M.E. Mora-Ramos, C.A. Duque, E. Kasapoglu, H. Sari, I. Sokmen, Linear and nonlinear optical properties in a double inverse parabolic quantum well under applied electric and magnetic fields. Superlattices Microstruct. 66, 129–135 (2014)

    ADS  Google Scholar 

  49. İ. Karabulut, U. Atav, H. Şafak, M. Tomak, Theoretical investigation of intersubband nonlinear optical rectification in AlxlGa1–xlAs/GaAs/AlxrGa1–xrAs asymmetric rectangular quantum wells. Phys. Stat. Sol. B 244(9), 3313–3324 (2007)

    ADS  Google Scholar 

  50. Z.H. Zhang, L.L. Zou, K.X. Guo, J.H. Yuan, The nonlinear optical rectification in asymmetrical and symmetrical Gaussian potential quantum wells with applied electric field. Opt. Commun. 359, 316–321 (2016)

    ADS  Google Scholar 

  51. B. Chen, K.-X. Guo, R.-Z. Wang, Y.-B. Zheng, B. Li, Nonlinear optical rectification in asymmetric double triangular quantum wells. Eur. Phys. J. B 66, 227–233 (2008)

    ADS  Google Scholar 

  52. S.S. Akiroglu, F. Ungan, U. Yesilgul, M.E. Mora-Ramos, C.A. Duque, E. Kasapoglu, H. Sari, I. Sokmen, Nonlinear optical rectification and the second and third harmonic generation in Poschl–Teller quantum well under the intense laser field. Phys. Lett. A 376, 1875–1880 (2012)

    ADS  Google Scholar 

  53. J.-L. Xiao, The effects of hydrogen-like impurity and temperature on state energies and transition frequency of strong-coupling bound polaron in an asymmetric Gaussian potential quantum well. J. Low Temp. Phys. 192, 41–47 (2018)

    ADS  Google Scholar 

  54. Y. Sun, Z.H. Ding, J. Xiao, Temperature effect on the ground state energy and the longitudinal optical-phonon mean number of the impurity polaron in asymmetrical 2D RbCl semi-exponential quantum wells. Mater. Express 9, 371–375 (2019)

    Google Scholar 

  55. M. Amini, M. Soleimani, M.H. Ehsani, Electronic and optical properties of GaAs/AlGaAs Fibonacci ordered multiple quantum well systems. Superlattices Microstruct. 112, 680–687 (2017)

    ADS  Google Scholar 

  56. H. Hassanabadi, M. Solaimani, H. Rahimov, Rashba coupling in three-electron-quantum dot: a numerical solution. Solid State Commun. 151, 1962 (2011)

    ADS  Google Scholar 

  57. M. Solaimani, S.M.A. Aleomraninejad, L. Lavaei, Optical rectification in quantum wells within different confinement and nonlinearity regimes. Superlattices Microstruct. 111, 556–567 (2017)

    ADS  Google Scholar 

  58. M.R.K. Vahdani, The effect of the electronic intersubband transitions of quantum dots on the linear and nonlinear optical properties of dot-matrix system. Superlattices Microstruct. 76, 326–338 (2014)

    ADS  Google Scholar 

  59. D. Ahn, S.-L. Chuang, Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE J. Quantum Electron 23, 2196 (1987)

    ADS  Google Scholar 

  60. W. Xie, The nonlinear optical rectification coefficient of quantum dots and rings with a repulsive scattering center. J. Lumin. 143, 27–30 (2013)

    Google Scholar 

  61. M. Solaimani, S.M.A. Aleomraninejad, Optical properties of energy-dependent effective mass GaAs/GaxIn1-xAs and GaAs/AlxGa1-xAs quantum well systems: a shooting method study. J. Electron. Mater. 48, 942–950 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for kind collaborations and assistance of Mr. Mohsen Salmani from Informatics Section in Department of Justice of Shahrood, Iran, for coding the Thue–Morse multilayers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Solaimani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solaimani, M. Optical rectification coefficient of GaAs/AlxGa1−xAs Thue–Morse multiple quantum wells. Eur. Phys. J. Plus 135, 455 (2020). https://doi.org/10.1140/epjp/s13360-020-00473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00473-x

Navigation