Skip to main content
Log in

Developing the evaluation method of heat capacity and speed of sound of real gases using fourth virial coefficient over Lennard-Jones (12-6) potential

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, we suggest an effective method of the evaluation of HC and SS of real gases by using the FVC over Lennard-Jones (12-6) potential. As known, the determination of the FVC is a key step to correct evaluation of the thermal properties. As an example of application, the suggested method has been performed for gases of Ar, SF6 and SiH4. The obtained results of HC at constant pressure and SS of gases Ar, SF6 and SiH4 are in good agreement with the corresponding theory and experimental data in the range of temperature from 90 to 800 K and range of pressure from 0.09 to 100.7 atm. The precision and accuracy of obtained results from the suggested method have been validated by the literature observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

VDW:

Van der Waals

FVC:

Fourth virial coefficient (cm9 mol−3)

HC:

Heat capacity (kJ/kg K)

SS:

Speed of sound (m s−1)

D(T):

Fourth virial coefficient (cm9 mol−3)

f(r ij):

Mayer function

u(r ij):

Intermolecular interaction

\( C_{\text{P}} \) :

Heat capacities (kJ/kg K)

\( C_{\text{P}}^{0} \) :

Heat capacities of ideal gases (kJ/kg K)

u :

Speed of sound (m s−1)

T :

Temperature (K)

\( k_{\text{B}} \) :

Boltzmann constant (J K−1)

\( N_{\text{A}} \) :

Avogadro number (mol−1)

ɛ :

Depth of potential energy minimum (kcal/mol)

σ :

Value of r at u(r) = 0 (Å)

P :

Pressure (atm)

R :

Universal gas constant (J/mol K)

M :

Molecular weight (g/mol)

γ :

Heat ratio

References

  1. H.E. Dillon, S.G. Penoncello, A fundamental equation for calculation of the thermodynamic properties of ethanol. Int. J. Thermophys. 25, 321–335 (2004)

    Article  ADS  Google Scholar 

  2. J.J. Hurly, K.A. Gillis, B.J. Melh, M.R. Moldover, The viscosity of seven gases measured with a greenspan viscometer. Int. J. Thermophys. 24, 1441–1474 (2003)

    Article  ADS  Google Scholar 

  3. Van der Waals, J. D.: Doctoral Dissertation, Leiden (1873)

  4. I. Polishuk, Generalized cubic equation of state adjusted to the virial coefficients of real gases and its prediction of auxiliary thermodynamic properties. Ind. Eng. Chem. Res. 48, 10708–10717 (2009)

    Article  Google Scholar 

  5. J.E. Mayer, M.G. Mayer, Statistical Mechanics (Wiley, Hoboken, 1948), pp. 75–82

    Google Scholar 

  6. G. Soave, Improvement of the Van Der Waals equation of state. Chem. Eng. Sci. 39, 357–369 (1984)

    Article  Google Scholar 

  7. O. Redlich, J.N.S. Kwong, On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. Chem. Rev. 44, 233–244 (1949)

    Article  Google Scholar 

  8. W.E. Deming, L.E. Shupe, The constants of the Beattie-Bridgeman equation of state with Bartlett’s P-V-T data on hydrogen. J. Am. Chem. Soc. 53, 843–849 (1931)

    Article  Google Scholar 

  9. D.Y. Peng, D.B. Robinson, A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64 (1976)

    Article  Google Scholar 

  10. J.P. O’connell, J.M. Haile, Thermodynamics Fundamentals of Applications (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  11. D.A. McQuarrine, J.D. Simon, Physical Chemistry: A Molecular Approach (University Science Book, Mill Valley, 1997)

    Google Scholar 

  12. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, Hoboken, 1954)

    MATH  Google Scholar 

  13. S. Katsura, Fourth virial coefficient for the square well potential. Phys. Rev. 115, 1417 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  14. S.F. Boys, I. Shavitt, Intermolecular forces and properties of fluids. I. The automatic calculation of higher virial coefficients and some values of fourth coefficient for the Lennard-Jones potential. Proc. R. Soc. (London) A254, 487 (1960)

    ADS  Google Scholar 

  15. J.A. Barker, J.J. Monaghan, Fourth virial coefficients for the 12-6 potential. J. Chem. Phys. 36, 2564–2571 (1962)

    Article  ADS  Google Scholar 

  16. E.D. Glandt, The fourth virial coefficient for a Lennard-Jones fluid in two dimensions. J. Chem. Phys. 68, 2952–2957 (1978)

    Article  ADS  Google Scholar 

  17. K.M. Dyer, J.S. Perkyns, B.M. Pettitt, A reexamination of virial coefficients of Lennard-Jones fluid. Theor. Chem. Acc. 105, 244–251 (2001)

    Article  Google Scholar 

  18. K.O. Monago, An equation of state for gaseous argon determined from the speed of sound. Chem. Phys. 316, 9–19 (2005)

    Article  Google Scholar 

  19. S.J. Pai, Y.C. Bae, Fourth order virial equation of state for spherical molecules using semi-soft core potential function. Fluid Phase Equilib. 338, 245–252 (2013)

    Article  Google Scholar 

  20. A. Hutem, S. Boonchui, Numerical evaluation of second and third virial coefficients of some inert gases via classical cluster expansion. J. Math. Chem. 50, 1262–1276 (2012)

    Article  MathSciNet  Google Scholar 

  21. K.O. Monago, C. Otobrise, Fourth order virial equation of state of a nonadditive Lennard-Jones fluid. Int. J. Compt. Theor. Chem. 3, 28–33 (2015)

    Article  Google Scholar 

  22. Ch. Tegeler, R. Span, W. Wagner, A new equation of state for argon covering the fluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 28, 779–850 (1999)

    Article  ADS  Google Scholar 

  23. CEARUN, NASA. Retrieved 2015, from https://cearun.grc.nasa.gov

  24. B.A. Mamedov, E. Somuncu, Analytical treatment of second virial coefficient over Lennard-Jones (2n-n) potential and its application to molecular systems. J. Mol. Struct. 1068, 164–169 (2014)

    Article  Google Scholar 

  25. F. Cuadros, I. Cachadiña, W. Ahumada, Determination of Lennard-Jones interaction parameters using new procedure. Mol. Eng. 6, 319–325 (1996)

    Article  Google Scholar 

  26. B.A. Mamedov, E. Somuncu, I.M. Askerov, Evaluation of speed of sound and specific heat capacities of real gases. J. Thermophys. Heat Transf. 32, 1–15 (2018)

    Article  Google Scholar 

  27. B.A. Younglove, Thermophysical properties of fluids. J. Phys. Chem. Ref. Data 11, 1–370 (1982)

    Article  Google Scholar 

  28. C. Guder, W. Wagner, A reference equation of state for the thermodynamic properties of sulfur hexafluoride (SF6) for temperatures from the melting line to 625 K and pressure up to 150 MPa. J. Phys. Chem. Ref. Data 38, 33–94 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK) Science Fellowships and Grant Programmes Department (BIDEB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Somuncu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somuncu, E., Mamedov, B.A. Developing the evaluation method of heat capacity and speed of sound of real gases using fourth virial coefficient over Lennard-Jones (12-6) potential. Eur. Phys. J. Plus 135, 454 (2020). https://doi.org/10.1140/epjp/s13360-020-00478-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00478-6

Navigation