Skip to main content

Advertisement

Log in

Neutron star equation of state and tidal deformability with nuclear energy density functionals

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Neutron star physics is the ultimate testing place for the physics of dense nuclear matter. Before the detection of gravitational waves from the merger of binary neutron stars, various nuclear equations of state have been used to estimate the macroscopic properties of neutron stars, such as masses and radii, based on electromagnetic observations. However, recent observations of the tidal deformability of neutron star from the gravitational waves GW170817 opened a new era of multi-messenger astronomy and astrophysics, and much theoretical work has been devoted to estimating the tidal deformability of neutron stars. In this article, we review our recent work on the application of nuclear energy density functionals to the properties of neutron stars, including tidal deformability. We found that many nuclear energy density functionals, including the new KIDS (Korea: IBS-Daegu-Sungkyunkwan) model, satisfy constraints both from current electromagnetic and from gravitational-wave observations. We discuss future possibilities of constraining the nuclear matter equation of state from ground-based experiments and multi-messenger observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All experimental and observational data in this study are available in the cited papers. All theoretical results are available from the authors upon request.]

References

  1. M. Prakash, Proceedings of 8th International Workshop on Critical Point and Onset of Deconfinement (CPOD 2013). Proceedings of Science 185, 24 (2013). arXiv:1307.0397

    Google Scholar 

  2. P. Demorest et al., Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  3. J. Anoniadis et al., Science 340, 1233232 (2013)

    Article  Google Scholar 

  4. H.T. Cromartie et al., Nature Astronomy 4, 72 (2020)

    Article  ADS  Google Scholar 

  5. C.-H. Lee, H.-S. Cho, Nucl. Phys. A 928, 296 (2014)

    Article  ADS  Google Scholar 

  6. C.-H. Lee, Int. J. Mod. Phys. E 26, 1740015 (2017)

    Article  ADS  Google Scholar 

  7. B.P. Abbott et al., LIGO Scientific Collaboration and Virgo Collaboration. Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  Google Scholar 

  8. LIGO Scientific Collaboration and Virgo Collaboration, et al., Astrophys. J. Lett. 848, L12 (2017)

  9. Y.-M. Kim, K. Kwak, Y. Lim, C.H. Hyun, C.-H. Lee, New Physics: Sae Mulli 68, 707 (2018)

    Google Scholar 

  10. Y.-M. Kim, Y. Lim, K. Kwak, C.H. Hyun, C.-H. Lee, Phys. Rev. C 98, 065805 (2018)

    Article  ADS  Google Scholar 

  11. P. Papakonstantinou, T.-S. Park, Y. Lim, C.H. Hyun, Phys. Rev. C 97, 014312 (2018)

    Article  ADS  Google Scholar 

  12. H. Gil, Y.-M. Kim, C.H. Hyun, P. Papakonstantinou, Y. Oh, Phys. Rev. C 100, 014312 (2019)

    Article  ADS  Google Scholar 

  13. H. Gil, P. Papakonstantinou, C.H. Hyun, Y. Oh, Phys. Rev. C 99, 064319 (2019)

    Article  ADS  Google Scholar 

  14. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998)

    Article  ADS  Google Scholar 

  15. M. Dutra, O. Lourenco, J.S.S. Martins, A. Delfino, J.R. Stone, P.D. Stevenson, Phys. Rev. C 85, 035201 (2012)

    Article  ADS  Google Scholar 

  16. C. Drischler, V. Somá, A. Schwenk, Phys. Rev. C 89, 205806 (2014)

    Article  ADS  Google Scholar 

  17. E. Epelbaum, H. Krebs, D. Lee, U.-G. Meissner, Eur. Phys. J. A 40, 199 (2009)

    Article  ADS  Google Scholar 

  18. C. Drischler et al., PRC 93, 054314 (2016)

    Article  ADS  Google Scholar 

  19. I. Tews et al., PRC 93, 024305 (2016)

    Article  ADS  Google Scholar 

  20. A. Gezelis, J. Carlson, Phys. Rev. C 81, 025803 (2010)

    Article  ADS  Google Scholar 

  21. P. Danielewicz, Nucl. Phys. A 727, 233 (2003)

    Article  ADS  Google Scholar 

  22. P. Danielewicz, R. Racey, W.G. Lynch, Science 298, 1592 (2002)

    Article  ADS  Google Scholar 

  23. W.G. Lynch, M.B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li, and A. W. Steiner Prog. Part. Nucl. Phys. 62, 427 (2009)

  24. C. Fuchs, Prog. Part. Nucl. Phys. 56, 1 (2006)

    Article  ADS  Google Scholar 

  25. D.H. Youngblood, H.L. Clark, Y.-W. Lui, Phys. Rev. Lett. 82, 691 (1999)

    Article  ADS  Google Scholar 

  26. National Nuclear Data Center, https://www.nndc.bnl.gov

  27. I. Angeli, K.P. Marinova, Atom. Data Nucl. Data Tabl. 99, 69 (2013)

    Article  ADS  Google Scholar 

  28. B.K. Agrawal, S.K. Dhiman, R. Kumar, Phys. Rev. C 73, 034319 (2006)

    Article  ADS  Google Scholar 

  29. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Shaeffer, Nucl. Phys. A 635, 231 (1998)

    Article  ADS  Google Scholar 

  30. P.-G. Reinhard, H. Flocard, Nucl. Phys. A 584, 467 (1995)

    Article  ADS  Google Scholar 

  31. J. Guo-Qiang Li, Phys. G 17, 1 (1991)

    Article  ADS  Google Scholar 

  32. H. Müller, B.D. Serot, Nucl. Phys. A 606, 508 (1996)

    Article  ADS  Google Scholar 

  33. L. Lindblom, Phys. Rev. D 97, 123019 (2018)

    Article  ADS  Google Scholar 

  34. B.P. Abbott et al., The LIGO Scientific Collaboration and the Virgo Collaboration. Phys. Rev. Lett. 121, 161101 (2018)

    Article  ADS  Google Scholar 

  35. A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 722, 33 (2010)

    Article  ADS  Google Scholar 

  36. T. Hinderer, B.D. Lackey, R.N. Lang, J.S. Read, Phys. Rev. D 81, 123016 (2010)

    Article  ADS  Google Scholar 

  37. M. Favata, Phys. Rev. Lett. 112, 101101 (2014)

    Article  ADS  Google Scholar 

  38. P.G. Krastev, B.-A. Li, arXiv:1801.04620 (2018)

  39. C.A. Raithel, F. Ozel, arXiv:1908.00018 (2019)

  40. J.M. Lattimer, Nucl. Phys. A 928, 276 (2014)

    Article  ADS  Google Scholar 

  41. J.K. Ahn et al., Few-Body Syst. 54, 197 (2013)

    Article  ADS  Google Scholar 

  42. T.E. Riley, A.L. Watts, S. Bogdanov et al., Astrophys. J. Letters 887, L21 (2019)

    Article  ADS  Google Scholar 

  43. M.C. Miller, F.K. Lamb, A.J. Dittmann et al., Astrophys. J. Letters 887, L24 (2019)

    Article  ADS  Google Scholar 

  44. B.P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), arXiv:2001.01761 (2020)

Download references

Acknowledgements

We were supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government; Ministry of Science and ICT and Ministry of Education. Y.M.K. NRF-2016R1A5A1013277 and NRF-2019R1C1C1010571; K.K. NRF-2016R1A5A1013277; C.H.H. NRF-2018R1A5A1025563; C.H.L. NRF-2016R1A5A1013277 and NRF-2018R1D1A1B07048599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hwan Lee.

Additional information

Communicated by David Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YM., Kwak, K., Hyun, C.H. et al. Neutron star equation of state and tidal deformability with nuclear energy density functionals. Eur. Phys. J. A 56, 157 (2020). https://doi.org/10.1140/epja/s10050-020-00164-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00164-2

Navigation