Skip to main content
Log in

Physical Processes in Star Formation

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In fluid dynamics, an eddy is understood as the swirling current of a fluid or a ‘blob of vorticity’, but there is a good tradition in hydrodynamic turbulence of avoiding any formal definition of a turbulent eddy, see page 52 in Davidson (2004).

  2. In realistic situations, both assumptions are usually not satisfied at large scales. However, if they are valid at small scales and far from boundaries of the flow or its other special regions, this general theoretical framework still remains useful.

  3. Relevant methods of taking averages of random functions of position and time in homogeneous and ergodic systems are discussed, for instance, in Sect. 2.1 of Batchelor (1953) and in Sect. 4.4 of Frisch (1995).

  4. Note that the Fourier transforms of homogeneous random functions are, generally, random distributions, i.e. not ordinary functions of their argument, \(\boldsymbol{k}\). One way to deal with this mathematical difficulty is to replace the ordinary integrals with generalized stochastic Fourier-Stieltjes integrals (Batchelor 1953); another way is to use low- or high-pass filtering (e.g. coarse-graining), which allows one to deal lusively with ordinary functions (Frisch 1995).

  5. Envisioned by Lewis F. Richardson in 1922 (Richardson 1965).

  6. A similar relation, \(\langle \delta u_{\parallel }(r) [\delta \theta (r)]^{2}\rangle =- \frac{4}{3}\epsilon _{\theta } r\), was obtained by Yaglom (1949) for temperature fluctuations in turbulent flows. Here, \(\delta \theta (r)\) is the temperature increment and \(\epsilon _{\theta }\) is the mean dissipation rate of temperature fluctuations. An anisotropic generalization of this relation exploited in Galtier and Banerjee (2011), \(\boldsymbol{\nabla }\boldsymbol{\cdot }\langle |\delta \boldsymbol{u}(\boldsymbol{r})|^{2}\delta \boldsymbol{u}( \boldsymbol{r})\rangle =-4\epsilon \), avoids projection onto the ∥ direction and is sometimes called the von Kármán-Howarth-Monin relation (Frisch 1995; Antonia et al. 1997).

  7. The same splitting based on \(\boldsymbol{u}_{\mathrm{s}}\) and \(\boldsymbol{u}_{\mathrm{d}}\) does not work for the Reynolds stress \(R_{ij}\equiv \langle \rho u_{i}u_{j}\rangle \), since in addition to solenoidal and dilatational stresses, there is also non-zero cross Reynolds stress (Lele 1994).

  8. There are hydrodynamic and acoustic pressure fluctuations. The pseudo-sound represents vortical pressure fluctuations advected with the fluid velocity, while acoustic waves propagate at the speed of sound. In the pseudo-sound component, the dilatational velocity field is in equilibrium with the solenoidal pressure. Both types of fluctuations can be measured by the observer.

  9. Thermal forcing can also be facilitated through a generalized cooling function (a volumetric source in the energy conservation law (Kritsuk and Norman 2002)) or through a large-scale injection of internal energy (Wang et al. 2019).

  10. The sonic scale, \(k_{\mathrm{s}}\), is defined as a scale at which the root mean squared velocity fluctuations are equal to the mean sound speed, \(\int _{k_{\mathrm{s}}}^{\infty }E(k)dk=\langle c_{\mathrm{s}}\rangle ^{2}\).

  11. This type of modeling is usually called an implicit large-eddy simulation (ILES) (Sytine et al. 2000) or a coarse DNS since the dissipation is of purely numerical origin and depends on the numerical method used.

  12. A similar slope was also obtained in simulations by W.-C. Müller (2005, private communication).

  13. In this context, point-splitting regularization refers to the use of two-point statistics (such as correlation functions, structure functions, and power spectra) when the products of fields at the same spatial (temporal) location are not mathematically well-defined.

  14. The coarse-graining operation is a simple convolution \(\langle \boldsymbol{a}\rangle _{r}(\boldsymbol{x},t)=\int \phi _{r}(\boldsymbol{y})\boldsymbol{a}(\boldsymbol{x}+ \boldsymbol{y},t)d\boldsymbol{y}\) with a smooth mollifier \(\phi _{r}(\boldsymbol{y})=\phi (\boldsymbol{y}/r)/r^{3}\) such that \(\int \phi _{r}(\boldsymbol{y})d\boldsymbol{y}=1\). This type of smooth filtering with compact support in space is used to single out the large scale component of a field variable \(\boldsymbol{a}(\boldsymbol{x},t)\) corresponding to length scales \(>r\).

  15. Here, denotes the complex conjugate and we used the convolution theorem to cast the Fourier transform of the correlation function \(R_{\boldsymbol{j}\boldsymbol{u}}(\boldsymbol{r})\) using the Fourier transforms of \(\boldsymbol{j}\) and \(\boldsymbol{u}\). Using the symmetric cross-covariance makes sure that the spectral kinetic energy density, \(K(\boldsymbol{k})\), is real. Finally, it follows from Parseval’s theorem that \(K=\int K(\boldsymbol{k})d\boldsymbol{k}=R_{\boldsymbol{j}\boldsymbol{u}}(0)/2\).

References

  • A.A. Abdo, M. Ackermann, M. Ajello et al., Observations of the young supernova remnant RX J1713.7-3946 with the Fermi Large Area Telescope. Astrophys. J. 734, 28 (2011)

    ADS  Google Scholar 

  • H. Abgrall, E. Roueff, I. Drira, Total transition probability and spontaneous radiative dissociation of B, C, B’ and D states of molecular hydrogen. Astron. Astrophys. Suppl. 141, 297–300 (2000)

    ADS  Google Scholar 

  • M. Ackermann, M. Ajello, A. Allafort et al., Detection of the characteristic pion-decay signature in supernova remnants. Science 339, 807–811 (2013)

    ADS  Google Scholar 

  • P.A.R. Ade, N. Aghanim, et al. Planck Collaboration, Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds. Astron. Astrophys. 586, A138 (2016)

    Google Scholar 

  • N. Aghanim, Y. Akrami et al. (Planck Collaboration), Planck 2018 results. XII. Galactic astrophysics using polarized dust emission, arXiv e-prints (2018). arXiv:1807.06212

  • F. Aharonian, A.G. Akhperjanian, K.M. Aye et al., Very high energy gamma rays from the direction of Sagittarius A. Astron. Astrophys. 425, L13–L17 (2004)

    ADS  Google Scholar 

  • F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi et al., The H.E.S.S. survey of the inner galaxy in very high energy gamma rays. Astrophys. J. 636(2), 777–797 (2006)

    ADS  Google Scholar 

  • F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi et al., An exceptional very high energy gamma-ray flare of PKS 2155-304. Astrophys. J. 664(2), L71–L74 (2007)

    ADS  Google Scholar 

  • A. Alexakis, L. Biferale, Cascades and transitions in turbulent flows. Phys. Rep. 767, 1–101 (2018)

    ADS  MathSciNet  Google Scholar 

  • H. Aluie, Compressible turbulence: the cascade and its locality. Phys. Rev. Lett. 106(17), 174502 (2011)

    ADS  Google Scholar 

  • H. Aluie, Scale decomposition in compressible turbulence. Physica D 247(1), 54–65 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  • H. Aluie, S. Li, H. Li, Conservative cascade of kinetic energy in compressible turbulence. Astrophys. J. 751(2), L29 (2012)

    ADS  Google Scholar 

  • S. Ames, Magneto-gravitational and thermal instability in the galactic disk. Astrophys. J. 182, 387–404 (1973)

    ADS  Google Scholar 

  • N. Andrés, F. Sahraoui, Alternative derivation of exact law for compressible and isothermal magnetohydrodynamics turbulence. Phys. Rev. E 96(5), 053205 (2017)

    ADS  Google Scholar 

  • N. Andrés, S. Galtier, F. Sahraoui, Exact law for homogeneous compressible Hall magnetohydrodynamics turbulence. Phys. Rev. E 97(1), 013204 (2018a)

    ADS  Google Scholar 

  • N. Andrés, F. Sahraoui, S. Galtier et al., Energy cascade rate in isothermal compressible magnetohydrodynamic turbulence. J. Plasma Phys. 84(4), 905840404 (2018b)

    Google Scholar 

  • R.A. Antonia, M. Ould-Rouis, F. Anselmet et al., Analogy between predictions of Kolmogorov and Yaglom. J. Fluid Mech. 332(1), 395–409 (1997)

    ADS  MATH  Google Scholar 

  • D. Arzoumanian, P. André, P. Didelon et al., Characterizing interstellar filaments with Herschel in IC 5146. Astron. Astrophys. 529, L6 (2011)

    ADS  Google Scholar 

  • P.W. Atkins, R.S. Friedman, Molecular Quantum Mechanics (Oxford University Press, London, 2011)

    Google Scholar 

  • W.I. Axford, E. Leer, G. Skadron, The acceleration of cosmic rays by shock waves. International Cosmic Ray Conference, vol. 11 (1977), pp. 132–137

    Google Scholar 

  • C. Bacchini, F. Fraternali, G. Pezzulli et al., The volumetric star formation law in the Milky Way. Astron. Astrophys. 632, A127 (2019)

    ADS  Google Scholar 

  • X.N. Bai, J. Ye, J. Goodman et al., Magneto-thermal disk winds from protoplanetary disks. Astrophys. J. 818(2), 152 (2016)

    ADS  Google Scholar 

  • E.L.O. Bakes, A.G.G.M. Tielens, The photoelectric heating mechanism for very small graphitic grains and polycyclic aromatic hydrocarbons. Astrophys. J. 427, 822 (1994)

    ADS  Google Scholar 

  • S.A. Balbus, Magnetohydrodynamics of protostellar disks, arXiv e-prints (2009). arXiv:0906.0854

  • J. Ballesteros-Paredes, Six myths on the virial theorem for interstellar clouds. Mon. Not. R. Astron. Soc. 372(1), 443–449 (2006)

    ADS  Google Scholar 

  • J. Bally, Observations of winds, jets, and turbulence generation in GMCs, in Computational Star Formation, ed. by J. Alves, B.G. Elmegreen, J.M. Girart et al. Proceedings of the International Astronomical Union, vol. 270 (2011), pp. 247–254

    Google Scholar 

  • J. Bally, Protostellar outflows. Annu. Rev. Astron. Astrophys. 54, 491–528 (2016)

    ADS  Google Scholar 

  • S. Banerjee, S. Galtier, Exact relation with two-point correlation functions and phenomenological approach for compressible magnetohydrodynamic turbulence. Phys. Rev. E 87(1), 013019 (2013)

    ADS  Google Scholar 

  • S. Banerjee, S. Galtier, A Kolmogorov-like exact relation for compressible polytropic turbulence. J. Fluid Mech. 742, 230–242 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  • S. Banerjee, S. Galtier, An alternative formulation for exact scaling relations in hydrodynamic and magnetohydrodynamic turbulence. J. Phys. A, Math. Gen. 50(1), 015501 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • S. Banerjee, A.G. Kritsuk, Exact relations for energy transfer in self-gravitating isothermal turbulence. Phys. Rev. E 96(5), 053116 (2017)

    ADS  Google Scholar 

  • S. Banerjee, A.G. Kritsuk, Energy transfer in compressible magnetohydrodynamic turbulence for isothermal self-gravitating fluids. Phys. Rev. E 97(2), 023107 (2018)

    ADS  Google Scholar 

  • R. Banerjee, R.E. Pudritz, Outflows and jets from collapsing magnetized cloud cores. Astrophys. J. 641(2), 949–960 (2006)

    ADS  Google Scholar 

  • I. Baraffe, G. Chabrier, J. Gallardo, Episodic accretion at early stages of evolution of low-mass stars and brown dwarfs: a solution for the observed luminosity spread in H-R diagrams? Astrophys. J. 702(1), L27–L31 (2009)

    ADS  Google Scholar 

  • G.K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge, 1953)

    MATH  Google Scholar 

  • G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967)

    MATH  Google Scholar 

  • R. Beck, Galactic and extragalactic magnetic fields - a concise review. Astrophys. Space Sci. Trans. 5, 43–47 (2009)

    ADS  Google Scholar 

  • R. Beck, Magnetic fields in galaxies. Space Sci. Rev. 166, 215–230 (2012)

    ADS  Google Scholar 

  • R. Beck, Magnetic fields in spiral galaxies. Astron. Astrophys. Rev. 24, 4 (2015)

    ADS  Google Scholar 

  • M.C. Begelman, C.F. McKee, Global effects of thermal conduction on two-phase media. Astrophys. J. 358, 375 (1990)

    ADS  Google Scholar 

  • A.R. Bell, The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 182, 147–156 (1978)

    ADS  Google Scholar 

  • R. Benzi, S. Ciliberto, C. Baudet et al., On the scaling of three-dimensional homogeneous and isotropic turbulence. Physica D 80(4), 385–398 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  • A. Beresnyak, MHD turbulence. Living Rev. Comput. Astrophys. 5, 2 (2019)

    ADS  Google Scholar 

  • A. Beresnyak, A. Lazarian, Turbulence in Magnetohydrodynamics (2019). https://doi.org/10.1515/9783110263282

    Book  MATH  Google Scholar 

  • F. Bigiel, A. Leroy, F. Walter et al., The star formation law in nearby galaxies on Sub-Kpc scales. Astron. J. 136, 2846–2871 (2008)

    ADS  Google Scholar 

  • T.G. Bisbas, P.P. Papadopoulos, S. Viti, Effective Destruction of CO by Cosmic Rays: Implications for Tracing H2 Gas in the Universe. Astrophys. J. 803, 37–49 (2015)

    ADS  Google Scholar 

  • T.G. Bisbas, E.F. van Dishoeck, P.P. Papadopoulos et al., Cosmic-ray Induced Destruction of CO in Star-forming Galaxies. Astrophys. J. 839, 90–107 (2017)

    ADS  Google Scholar 

  • D. Biskamp, Magnetohydrodynamic turbulence. Plasma Phys. Control. Fusion 45, 9 (2003)

    MathSciNet  MATH  Google Scholar 

  • J.H. Black, The physical state of primordial intergalactic clouds. Mon. Not. R. Astron. Soc. 197, 553–563 (1981)

    ADS  Google Scholar 

  • J.H. Black, A. Dalgarno, Models of interstellar clouds. I. The Zeta Ophiuchi cloud. Astrophys. J. Suppl. Ser. 34, 405–423 (1977)

    ADS  Google Scholar 

  • R.D. Blandford, J.P. Ostriker, Particle acceleration by astrophysical shocks. Astrophys. J. 221, L29–L32 (1978)

    ADS  Google Scholar 

  • R.D. Blandford, D.G. Payne, Hydromagnetic flows from accretion disks and the production of radio jets. Mon. Not. R. Astron. Soc. 199, 883–903 (1982)

    ADS  MATH  Google Scholar 

  • S. Boldyrev, Å. Nordlund, P. Padoan, Scaling relations of supersonic turbulence in star-forming molecular clouds. Astrophys. J. 573(2), 678–684 (2002)

    ADS  Google Scholar 

  • I.A. Bonnell, M.R. Bate, C.J. Clarke et al., Competitive accretion in embedded stellar clusters. Mon. Not. R. Astron. Soc. 323(4), 785–794 (2001)

    ADS  Google Scholar 

  • W.B. Bonnor, Boyle’s law and gravitational instability. Mon. Not. R. Astron. Soc. 116, 351 (1956)

    ADS  MathSciNet  MATH  Google Scholar 

  • T.L. Bourke, P.C. Myers, G. Robinson et al., New OH Zeeman measurements of magnetic field strengths in molecular clouds. Astrophys. J. 554(2), 916–932 (2001)

    ADS  Google Scholar 

  • J. Bouvier, S.P. Matt, S. Mohanty et al., Angular momentum evolution of young low-mass stars and brown dwarfs: observations and theory, in Protostars and Planets VI (2014), pp. 433–450

    Google Scholar 

  • A. Brandenburg, Advances in mean-field dynamo theory and applications to astrophysical turbulence. J. Plasma Phys. 84(4), 735840404 (2018)

    Google Scholar 

  • A. Brandenburg, D. Sokoloff, K. Subramanian, Current status of turbulent dynamo theory. From large-scale to small-scale dynamos. Space Sci. Rev. 169(1–4), 123–157 (2012)

    ADS  Google Scholar 

  • E. Bressert, N. Bastian, R. Gutermuth et al., The spatial distribution of star formation in the solar neighbourhood: do all stars form in dense clusters? Mon. Not. R. Astron. Soc. 409, L54–L58 (2010)

    ADS  Google Scholar 

  • E. Bron, J. Le Bourlot, F. Le Petit, Surface chemistry in the interstellar medium. II. \(\text{H}_{2}\) formation on dust with random temperature fluctuations. Astron. Astrophys. 569, A100 (2014)

    Google Scholar 

  • C.M. Brunt, C. Federrath, An observational method to measure the relative fractions of solenoidal and compressible modes in interstellar clouds. Mon. Not. R. Astron. Soc. 442(2), 1451–1469 (2014)

    ADS  Google Scholar 

  • C.M. Brunt, M.H. Heyer, M.M. Mac Low, Turbulent driving scales in molecular clouds. Astron. Astrophys. 504(3), 883–890 (2009)

    ADS  Google Scholar 

  • C.M. Brunt, C. Federrath, D.J. Price, A method for reconstructing the variance of a 3D physical field from 2D observations: application to turbulence in the interstellar medium. Mon. Not. R. Astron. Soc. 403(3), 1507–1515 (2010)

    ADS  Google Scholar 

  • M.G. Burton, D.J. Hollenbach, A.G.G.M. Tielens, Line emission from clumpy photodissociation regions. Astrophys. J. 365, 620 (1990)

    ADS  Google Scholar 

  • D. Caprioli, A. Spitkovsky, Simulations of ion acceleration at non-relativistic shocks. I. Acceleration efficiency. Astrophys. J. 783(2), 91 (2014)

    ADS  Google Scholar 

  • J.J. Carroll, A. Frank, E.G. Blackman et al., Outflow-driven turbulence in molecular clouds. Astrophys. J. 695(2), 1376–1381 (2009)

    ADS  Google Scholar 

  • P. Caselli, C.M. Walmsley, R. Terzieva et al., The ionization fraction in dense cloud cores. Astrophys. J. 499(1), 234–249 (1998)

    ADS  Google Scholar 

  • R. Cen, A hydrodynamic approach to cosmology: methodology. Astrophys. J. Suppl. Ser. 78, 341 (1992)

    ADS  Google Scholar 

  • R. Cen, T. Fang, Where are the baryons? III. Nonequilibrium effects and observables. Astrophys. J. 650(2), 573–591 (2006)

    ADS  Google Scholar 

  • C.J. Cesarsky, H.J. Volk, Cosmic ray penetration into molecular clouds. Astron. Astrophys. 70, 367 (1978)

    ADS  Google Scholar 

  • D. Ceverino, A. Dekel, F. Bournaud, High-redshift clumpy discs and bulges in cosmological simulations. Mon. Not. R. Astron. Soc. 404(4), 2151–2169 (2010)

    ADS  Google Scholar 

  • G. Chabrier, Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003)

    ADS  Google Scholar 

  • B.D.G. Chandran, Confinement and isotropization of galactic cosmic rays by molecular-cloud magnetic mirrors when turbulent scattering is weak. Astrophys. J. 529(1), 513–535 (2000)

    ADS  Google Scholar 

  • S. Chandrasekhar, The fluctuations of density in isotropic turbulence. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 210(1100), 18–25 (1951). http://www.jstor.org/stable/98946

    ADS  MathSciNet  MATH  Google Scholar 

  • P. Chassaing, An alternative formulation of the equations of turbulent motion for a fluid of variable density. J. Méc. Théor. Appl. 4(3), 375–389 (1985)

    MathSciNet  MATH  Google Scholar 

  • P. Chassaing, R. Antonia, F. Anselmet et al., Variable density fluid turbulence, in Fluid Mechanics and Its Applications, vol. 69 (Kluwer Academic, Dordrecht, 2002)

    Google Scholar 

  • S. Chen, Z. Xia, J. Wang et al., Recent progress in compressible turbulence. Acta Mech. Sin. 31(3), 275 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • M. Chevance, J.M.D. Kruijssen, A.P.S. Hygate et al., Mon. Not. R. Astron. Soc. 493(2), 2872–2909 (2020)

    ADS  Google Scholar 

  • C. Chiuderi, M. Velli, Basics of Plasma Astrophysics (2015)

    MATH  Google Scholar 

  • E. Choi, J.M. Stone, The effect of anisotropic conduction on the thermal instability in the interstellar medium. Astrophys. J. 747, 86 (2012)

    ADS  Google Scholar 

  • B.T. Chu, L.S.G. Kovasznay, Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3, 494–514 (1957)

    ADS  MathSciNet  Google Scholar 

  • E. Churazov, R. Sunyaev, J. Isern et al., Cobalt-56 \(\gamma \)-ray emission lines from the type Ia supernova 2014J. Nature 512(7515), 406–408 (2014)

    ADS  Google Scholar 

  • E. Churchwell, M.S. Povich, D. Allen et al., The bubbling galactic disk. Astrophys. J. 649(2), 759–778 (2006)

    ADS  Google Scholar 

  • P.C. Clark, S.C.O. Glover, On column density thresholds and the star formation rate. Mon. Not. R. Astron. Soc. 444(3), 2396–2414 (2014)

    ADS  Google Scholar 

  • P.C. Clark, S.C.O. Glover, R.S. Klessen et al., Gravitational fragmentation in turbulent primordial gas and the initial mass function of population III stars. Astrophys. J. 727(2), 110 (2011)

    ADS  Google Scholar 

  • P.C. Clark, S.C.O. Glover, S.E. Ragan et al., On the temperature structure of the galactic center cloud G0.253+0.016. Astrophys. J. 768(2), L34 (2013)

    ADS  Google Scholar 

  • B. Commerçon, P. Hennebelle, E. Audit et al., Protostellar collapse: radiative and magnetic feedbacks on small-scale fragmentation. Astron. Astrophys. 510, L3 (2010)

    ADS  Google Scholar 

  • B. Commerçon, P. Hennebelle, T. Henning, Collapse of massive magnetized dense cores using radiation magnetohydrodynamics: early fragmentation inhibition. Astrophys. J. 742, L9 (2011)

    ADS  Google Scholar 

  • E. Congiu, E. Matar, L.E. Kristensen et al., Laboratory evidence for the non-detection of excited nascent \(\text{H}_{2}\) in dark clouds. Mon. Not. R. Astron. Soc. 397(1), L96–L100 (2009)

    ADS  Google Scholar 

  • A.W. Cook, Y. Zhou, Energy transfer in Rayleigh-Taylor instability. Phys. Rev. E 66, 026312 (2002). https://doi.org/10.1103/PhysRevE.66.026312

    Article  ADS  MathSciNet  Google Scholar 

  • R.M. Crutcher, Magnetic fields in molecular clouds: observations confront theory. Astrophys. J. 520(2), 706–713 (1999)

    ADS  Google Scholar 

  • R.M. Crutcher, Magnetic fields in molecular clouds. Annu. Rev. Astron. Astrophys. 50, 29–63 (2012)

    ADS  Google Scholar 

  • R.M. Crutcher, B. Wandelt, C. Heiles et al., Magnetic fields in interstellar clouds from Zeeman observations: inference of total field strengths by Bayesian analysis. Astrophys. J. 725, 466–479 (2010)

    ADS  Google Scholar 

  • C.J. Cyganowski, B.A. Whitney, E. Holden et al., A catalog of extended green objects in the GLIMPSE survey: a new sample of massive young stellar object outflow candidates. Astron. J. 136(6), 2391–2412 (2008)

    ADS  Google Scholar 

  • E. Daddi, D. Elbaz, F. Walter et al., Different star formation laws for disks versus starbursts at low and high redshifts. Astrophys. J. 714, L118–L122 (2010)

    ADS  Google Scholar 

  • J.E. Dale, B. Ercolano, I.A. Bonnell, Ionizing feedback from massive stars in massive clusters - III. Disruption of partially unbound clouds. Mon. Not. R. Astron. Soc. 430(1), 234–246 (2013)

    ADS  Google Scholar 

  • A. Dalgarno, J.H. Black, REVIEW: molecule formation in the interstellar gas. Rep. Prog. Phys. 39(6), 573–612 (1976)

    ADS  Google Scholar 

  • A. Dalgarno, M. Yan, W. Liu, Electron energy deposition in a gas mixture of atomic and molecular hydrogen and helium. Astrophys. J. Suppl. Ser. 125(1), 237–256 (1999)

    ADS  Google Scholar 

  • P.A. Davidson, Turbulence: An Introduction for Scientists and Engineers (2004)

    MATH  Google Scholar 

  • M.A. de Avillez, D. Breitschwerdt, The diagnostic o VI absorption line in diffuse plasmas: comparison of non-equilibrium ionization structure simulations to FUSE data. Astrophys. J. 761(2), L19 (2012)

    ADS  Google Scholar 

  • T. de Karman, L. Howarth, On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A 164, 192–215 (1938)

    ADS  MATH  Google Scholar 

  • P.H. Diamond, S.I. Itoh, K. Itoh, Modern Plasma Physics (2010)

    Google Scholar 

  • S. Dib, J. Kim, E. Vázquez-Semadeni et al., The virial balance of clumps and cores in molecular clouds. Astrophys. J. 661(1), 262–284 (2007)

    ADS  Google Scholar 

  • R. Diehl, T. Siegert, W. Hillebrandt et al., Early 56Ni decay gamma rays from SN2014J suggest an unusual explosion. Science 345, 1162–1165 (2014)

    ADS  Google Scholar 

  • D.A. Donzis, S. Jagannathan, Fluctuations of thermodynamic variables in stationary compressible turbulence. J. Fluid Mech. 733, 221–244 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  • D.A. Donzis, J. Panickacheril, Universality and scaling in compressible turbulence, arXiv e-prints (2019). arXiv:1907.07871

  • B.T. Draine, Physics of the Interstellar and Intergalactic Medium (2011)

    MATH  Google Scholar 

  • B.T. Draine, F. Bertoldi, Structure of stationary photodissociation fronts. Astrophys. J. 468, 269 (1996)

    ADS  Google Scholar 

  • B.T. Draine, H.M. Lee, Optical properties of interstellar graphite and silicate grains. Astrophys. J. 285, 89 (1984)

    ADS  Google Scholar 

  • B.T. Draine, A. Li, Infrared emission from interstellar dust. IV. The silicate-graphite-PAH model in the Post-Spitzer era. Astrophys. J. 657(2), 810–837 (2007)

    ADS  Google Scholar 

  • B.T. Draine, B. Sutin, Collisional charging of interstellar grains. Astrophys. J. 320, 803 (1987)

    ADS  Google Scholar 

  • B.T. Draine, W.G. Roberge, A. Dalgarno, Magnetohydrodynamic shock waves in molecular clouds. Astrophys. J. 264, 485–507 (1983)

    ADS  Google Scholar 

  • A. Dutrey, G. Duvert, A. Castets et al., Periodically spaced fragmentation in Orion A. Astron. Astrophys. 247, L9 (1991)

    ADS  Google Scholar 

  • R. Ebert, Über die Verdichtung von H I-Gebieten. Mit 5 Textabbildungen. Z. Astrophys. 37, 217 (1955)

    ADS  MATH  Google Scholar 

  • K. Ebinger, S. Curtis, C. Fröhlich et al., PUSHing core-collapse supernovae to explosions in spherical symmetry. II. Explodability and remnant properties. Astrophys. J. 870(1), 1 (2019)

    ADS  Google Scholar 

  • B.G. Elmegreen, A. Burkert, Accretion-driven turbulence and the transition to global instability in young galaxy disks. Astrophys. J. 712(1), 294–302 (2010)

    ADS  Google Scholar 

  • B.G. Elmegreen, J. Scalo, Interstellar turbulence I: observations and processes. Annu. Rev. Astron. Astrophys. 42, 211–273 (2004)

    ADS  Google Scholar 

  • C. Elphick, O. Regev, N. Shaviv, Dynamics of fronts in thermally bistable fluids. Astrophys. J. 392, 106 (1992)

    ADS  Google Scholar 

  • G.L. Eyink, T.D. Drivas, Cascades and dissipative anomalies in compressible fluid turbulence. Phys. Rev. X 8(1), 011022 (2018)

    Google Scholar 

  • G.L. Eyink, K.R. Sreenivasan, Onsager and the theory of hydrodynamic turbulence. Rev. Mod. Phys. 78(1), 87–135 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  • E. Falgarone, G. Pineau des Forets, E. Roueff, Chemical signatures of the intermittency of turbulence in low density interstellar clouds. Astron. Astrophys. 300, 870 (1995)

    ADS  Google Scholar 

  • G. Falkovich, A.G. Kritsuk, How vortices and shocks provide for a flux loop in two-dimensional compressible turbulence. Phys. Rev. Fluids 2(9), 092603 (2017)

    ADS  Google Scholar 

  • G. Falkovich, I. Fouxon, Y. Oz, New relations for correlation functions in Navier-Stokes turbulence. J. Fluid Mech. 644, 465 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  • C.A. Faucher-Giguère, E. Quataert, P.F. Hopkins, Feedback-regulated star formation in molecular clouds and galactic discs. Mon. Not. R. Astron. Soc. 433(3), 1970–1990 (2013)

    ADS  Google Scholar 

  • A. Favre, Turbulence: space-time statistical properties and behavior in supersonic flows. Phys. Fluids 26(10), 2851–2863 (1983)

    ADS  MATH  Google Scholar 

  • C. Federrath, The turbulent formation of stars. Phys. Today 71(6), 38–42 (2018)

    Google Scholar 

  • C. Federrath, M. Schrön, R. Banerjee et al., Modeling jet and outflow feedback during star cluster formation. Astrophys. J. 790(2), 128 (2014)

    ADS  Google Scholar 

  • C. Federrath, R.S. Klessen, L. Iapichino et al., The world’s largest turbulence simulations, arXiv e-prints (2016). arXiv:1607.00630

  • E. Feireisl, Dynamics of Viscous Compressible Fluids (Oxford University Press, London, 2004)

    MATH  Google Scholar 

  • E. Feireisl, T.G. Karper, M. Pokorný, Mathematical Theory of Compressible Viscous Fluids. Lecture Notes in Mathematical Fluid Mechanics (Birkhäuser, Basel, 2016)

    MATH  Google Scholar 

  • R. Feldmann, N.Y. Gnedin, A.V. Kravtsov, How universal is the Sigma_SFR{–}Sigma_H_2 relation? Astrophys. J. 732(2), 115 (2011)

    ADS  Google Scholar 

  • K.M. Ferrière, The interstellar environment of our galaxy. Rev. Mod. Phys. 73, 1031–1066 (2001)

    ADS  Google Scholar 

  • J.D. Fiege, R.E. Pudritz, Helical fields and filamentary molecular clouds - I. Mon. Not. R. Astron. Soc. 311(1), 85–104 (2000)

    ADS  Google Scholar 

  • G.B. Field, Thermal instability. Astrophys. J. 142, 531 (1965)

    ADS  Google Scholar 

  • G.B. Field, D.W. Goldsmith, H.J. Habing, Cosmic-ray heating of the interstellar gas. Astrophys. J. 155, L149 (1969)

    ADS  Google Scholar 

  • J. Fleck, C. Robert, Scaling relations for the turbulent, non–self-gravitating, neutral component of the interstellar medium. Astrophys. J. 458, 739 (1996)

    ADS  Google Scholar 

  • A. Fletcher, R. Beck, A. Shukurov et al., Magnetic fields and spiral arms in the galaxy M51. Mon. Not. R. Astron. Soc. 412, 2396–2416 (2011)

    ADS  Google Scholar 

  • D.R. Flower, J. Le Bourlot, G. Pineau des Forêts et al., The contributions of J-type shocks to the \(\text{H}_{2}\) emission from molecular outflow sources. Mon. Not. R. Astron. Soc. 341(1), 70–80 (2003)

    ADS  Google Scholar 

  • P.N. Foster, R.A. Chevalier, Gravitational collapse of an isothermal sphere. Astrophys. J. 416, 303 (1993)

    ADS  Google Scholar 

  • U. Frisch Turbulence (1995)

    MATH  Google Scholar 

  • Y. Fukui, N. Mizuno, R. Yamaguchi et al., On the mass spectrum of giant molecular clouds in the large magellanic cloud. Publ. Astron. Soc. Jpn. 53(6), L41–L44 (2001)

    ADS  Google Scholar 

  • B.M. Gaensler, G.J. Madsen, S. Chatterjee et al., The vertical structure of warm ionised gas in the Milky Way. Publ. Astron. Soc. Aust. 25(4), 184–200 (2008)

    ADS  Google Scholar 

  • M. Galametz, S.C. Madden, F. Galliano et al., Probing the dust properties of galaxies up to submillimetre wavelengths. II. Dust-to-gas mass ratio trends with metallicity and the submm excess in dwarf galaxies. Astron. Astrophys. 532, A56 (2011)

    ADS  Google Scholar 

  • S. Galtier, Turbulence in space plasmas and beyond. J. Phys. A, Math. Theor. 51(29), 293001 (2018)

    MathSciNet  MATH  Google Scholar 

  • S. Galtier, S. Banerjee, Exact relation for correlation functions in compressible isothermal turbulence. Phys. Rev. Lett. 107(13), 134501 (2011)

    ADS  Google Scholar 

  • S. Geen, J. Rosdahl, J. Blaizot et al., A detailed study of feedback from a massive star. Mon. Not. R. Astron. Soc. 448, 3248–3264 (2015)

    ADS  Google Scholar 

  • R. Genzel, L.J. Tacconi, J. Gracia-Carpio et al., A study of the gas-star formation relation over cosmic time. Mon. Not. R. Astron. Soc. 407, 2091–2108 (2010)

    ADS  Google Scholar 

  • P. Girichidis, C. Federrath, R. Banerjee et al., Importance of the initial conditions for star formation - I. Cloud evolution and morphology. Mon. Not. R. Astron. Soc. 413, 2741–2759 (2011)

    ADS  Google Scholar 

  • P. Girichidis, C. Federrath, R. Banerjee et al., Importance of the initial conditions for star formation - II. Fragmentation-induced starvation and accretion shielding. Mon. Not. R. Astron. Soc. 420, 613–626 (2012)

    ADS  Google Scholar 

  • P. Girichidis, L. Konstandin, A.P. Whitworth et al., On the evolution of the density probability density function in strongly self-gravitating systems. Astrophys. J. 781, 91 (2014)

    ADS  Google Scholar 

  • P. Girichidis, S. Walch, T. Naab et al., The SILCC (SImulating the Life-Cycle of molecular clouds) project - II. Dynamical evolution of the supernova-driven ISM and the launching of outflows. Mon. Not. R. Astron. Soc. 456, 3432–3455 (2016)

    ADS  Google Scholar 

  • P. Girichidis, D. Seifried, T. Naab et al., The SILCC project - V. The impact of magnetic fields on the chemistry and the formation of molecular clouds. Mon. Not. R. Astron. Soc. 480, 3511–3540 (2018)

    ADS  Google Scholar 

  • A.E. Glassgold, W.D. Langer, The C+-CO transition in interstellar clouds. Astrophys. J. 197, 347–350 (1975)

    ADS  Google Scholar 

  • A.E. Glassgold, D. Galli, M. Padovani, Cosmic-ray and X-ray heating of interstellar clouds and protoplanetary disks. Astrophys. J. 756(2), 157 (2012)

    ADS  Google Scholar 

  • S.C.O. Glover, Comparing gas-phase and grain-catalyzed \(\text{H}_{2}\) formation. Astrophys. J. 584(1), 331–338 (2003)

    ADS  Google Scholar 

  • S.C.O. Glover, P.C. Clark, Approximations for modelling CO chemistry in giant molecular clouds: a comparison of approaches. Mon. Not. R. Astron. Soc. 421, 116–131 (2012a)

    ADS  Google Scholar 

  • S.C.O. Glover, P.C. Clark, Is molecular gas necessary for star formation? Mon. Not. R. Astron. Soc. 421, 9–19 (2012b)

    ADS  Google Scholar 

  • S.C.O. Glover, P.C. Clark, Star formation in metal-poor gas clouds. Mon. Not. R. Astron. Soc. 426(1), 377–388 (2012c)

    ADS  Google Scholar 

  • S.C.O. Glover, A.K. Jappsen, Star formation at very low metallicity. I. Chemistry and cooling at low densities. Astrophys. J. 666(1), 1–19 (2007)

    ADS  Google Scholar 

  • S.C.O. Glover, M.M. Mac Low, Simulating the formation of molecular clouds. II. Rapid formation from turbulent initial conditions. Astrophys. J. 659(2), 1317–1337 (2007)

    ADS  Google Scholar 

  • O. Gnat, G.J. Ferland, Ion-by-ion cooling efficiencies. Astrophys. J. Suppl. Ser. 199, 20 (2012)

    ADS  Google Scholar 

  • N.Y. Gnedin, N. Hollon, Cooling and heating functions of photoionized gas. Astrophys. J. Suppl. Ser. 202(2), 13 (2012)

    ADS  Google Scholar 

  • B. Godard, E. Falgarone, G. Pineau Des Forêts, Models of turbulent dissipation regions in the diffuse interstellar medium. Astron. Astrophys. 495(3), 847–867 (2009)

    ADS  MATH  Google Scholar 

  • P. Goldreich, J. Kwan, Molecular clouds. Astrophys. J. 189, 441–454 (1974)

    ADS  Google Scholar 

  • P.F. Goldsmith, Molecular depletion and thermal balance in dark cloud cores. Astrophys. J. 557, 736–746 (2001)

    ADS  Google Scholar 

  • P.F. Goldsmith, W.D. Langer, Molecular cooling and thermal balance of dense interstellar clouds. Astrophys. J. 222, 881–895 (1978)

    ADS  Google Scholar 

  • M. Gong, E.C. Ostriker, M.G. Wolfire, A simple and accurate network for hydrogen and carbon chemistry in the interstellar medium. Astrophys. J. 843, 38 (2017)

    ADS  Google Scholar 

  • R.J. Gould, E.E. Salpeter, The interstellar abundance of the hydrogen molecule. I. Basic processes. Astrophys. J. 138, 393 (1963)

    ADS  Google Scholar 

  • J.P. Graham, R. Cameron, M. Schüssler, Turbulent small-scale dynamo action in solar surface simulations. Astrophys. J. 714(2), 1606–1616 (2010)

    ADS  Google Scholar 

  • R. Gredel, S. Lepp, A. Dalgarno, The C/CO ratio in dense interstellar clouds. Astrophys. J. 323, L137 (1987)

    ADS  Google Scholar 

  • R. Gredel, S. Lepp, A. Dalgarno et al., Cosmic-ray–induced photodissociation and photoionization rates of interstellar molecules. Astrophys. J. 347, 289 (1989)

    ADS  Google Scholar 

  • T.H. Greif, V. Springel, S.D.M. White et al., Simulations on a moving mesh: the clustered formation of population III protostars. Astrophys. J. 737(2), 75 (2011)

    ADS  Google Scholar 

  • I.A. Grenier, J.H. Black, A.W. Strong, The nine lives of cosmic rays in galaxies. Annu. Rev. Astron. Astrophys. 53, 199–246 (2015)

    ADS  Google Scholar 

  • P. Grete, B.W. O’Shea, K. Beckwith et al., Energy transfer in compressible magnetohydrodynamic turbulence. Phys. Plasmas 24(9), 092311 (2017)

    ADS  Google Scholar 

  • R.A. Gutermuth, J.L. Pipher, S.T. Megeath et al., A correlation between surface densities of young stellar objects and gas in eight nearby molecular clouds. Astrophys. J. 739, 84 (2011)

    ADS  Google Scholar 

  • H.J. Habing, The interstellar radiation density between 912 A and 2400 A. Bull. Astron. Inst. Neth. 19, 421 (1968)

    ADS  Google Scholar 

  • L.M. Haffner, R.J. Dettmar, J.E. Beckman et al., The warm ionized medium in spiral galaxies. Rev. Mod. Phys. 81(3), 969–997 (2009)

    ADS  Google Scholar 

  • J.S. Hall, Observations of the polarized light from stars. Science 109(2825), 166–167 (1949)

    ADS  Google Scholar 

  • C.J. Hansen, S.D. Kawaler, V. Trimble, Stellar Interiors: Physical Principles, Structure, and Evolution (2004)

    Google Scholar 

  • C.E. Hansen, R.I. Klein, C.F. McKee et al., Feedback effects on low-mass star formation. Astrophys. J. 747(1), 22 (2012)

    ADS  Google Scholar 

  • L. Hartmann, G. Herczeg, N. Calvet, Accretion onto pre-main-sequence stars. Annu. Rev. Astron. Astrophys. 54, 135–180 (2016)

    ADS  Google Scholar 

  • M. Haverkorn, Magnetic fields in the Milky Way, in Magnetic Fields in Diffuse Media, ed. by A. Lazarian, E.M. de Gouveia Dal Pino, C. Melioli. Astrophys. Space Sci. Library, vol. 407 (2015), p. 483

    Google Scholar 

  • C.C. Hayward, P.F. Hopkins, How stellar feedback simultaneously regulates star formation and drives outflows. Mon. Not. R. Astron. Soc. 465(2), 1682–1698 (2017)

    ADS  Google Scholar 

  • V. Heesen, E. Brinks, M.G.H. Krause et al., The non-thermal superbubble in IC 10: the generation of cosmic ray electrons caught in the act. Mon. Not. R. Astron. Soc. 447, L1–L5 (2015)

    ADS  Google Scholar 

  • C. Heiles, R. Crutcher, Magnetic fields in diffuse HI and molecular clouds, in Cosmic Magnetic Fields, ed. by R. Wielebinski, R. Beck. Lecture Notes in Physics, vol. 664 (Springer, Berlin, 2005), p. 137

    Google Scholar 

  • H. Helmholtz, Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J. Reine Angew. Math. 55, 25–55 (1858). http://eudml.org/doc/147720

    MathSciNet  Google Scholar 

  • P. Hennebelle, E. Falgarone, Turbulent molecular clouds. Astron. Astrophys. Rev. 20, 55 (2012)

    ADS  Google Scholar 

  • P. Hennebelle, S. Fromang, Magnetic processes in a collapsing dense core. I. Accretion and ejection. Astron. Astrophys. 477(1), 9–24 (2008)

    ADS  MATH  Google Scholar 

  • P. Hennebelle, M. Pérault, Dynamical condensation in a thermally bistable flow. Application to interstellar cirrus. Astron. Astrophys. 351, 309–322 (1999)

    ADS  Google Scholar 

  • P. Hennebelle, I. Si, The role of magnetic field in molecular cloud formation and evolution. Front. Astron. Space Sci. 6, 5 (2019)

    ADS  Google Scholar 

  • P. Hennebelle, A.P. Whitworth, P.P. Gladwin et al., Protostellar collapse induced by compression. Mon. Not. R. Astron. Soc. 340(3), 870–882 (2003)

    ADS  Google Scholar 

  • R.N. Henriksen, On molecular cloud scaling laws and star formation. Astrophys. J. 377, 500 (1991)

    ADS  Google Scholar 

  • R. Herrera-Camus, D.B. Fisher, A.D. Bolatto et al., Dust-to-gas ratio in the extremely metal-poor galaxy I Zw 18. Astrophys. J. 752(2), 112 (2012)

    ADS  Google Scholar 

  • M. Heyer, T.M. Dame, Molecular clouds in the Milky Way. Annu. Rev. Astron. Astrophys. 53, 583–629 (2015)

    ADS  Google Scholar 

  • M.H. Heyer, C. Brunt, R.L. Snell et al., The five college radio astronomy observatory CO survey of the outer galaxy. Astrophys. J. Suppl. Ser. 115(2), 241–258 (1998)

    ADS  Google Scholar 

  • M. Heyer, C. Krawczyk, J. Duval et al., Re-examining Larson’s scaling relationships in galactic molecular clouds. Astrophys. J. 699, 1092–1103 (2009)

    ADS  Google Scholar 

  • A.S. Hill, M.R. Joung, M.M. Mac Low et al., Vertical structure of a supernova-driven turbulent, magnetized interstellar medium. Astrophys. J. 750, 104 (2012)

    ADS  Google Scholar 

  • W.A. Hiltner, On the presence of polarization in the continuous radiation of stars. II. Astrophys. J. 109, 471 (1949)

    ADS  Google Scholar 

  • S. Hirano, T. Hosokawa, N. Yoshida et al., One hundred first stars: protostellar evolution and the final masses. Astrophys. J. 781(2), 60 (2014)

    ADS  Google Scholar 

  • S. Hocuk, M. Spaans, The impact of X-rays on molecular cloud fragmentation and the inital mass function. Astron. Astrophys. 522, A24 (2010)

    ADS  Google Scholar 

  • D. Hollenbach, C.F. McKee, Molecule formation and infrared emission in fast interstellar shocks. III. Results for J shocks in molecular clouds. Astrophys. J. 342, 306 (1989)

    ADS  Google Scholar 

  • P.F. Hopkins, D. Kereš, J. Oñorbe et al., Galaxies on FIRE (feedback in realistic environments): stellar feedback explains cosmologically inefficient star formation. Mon. Not. R. Astron. Soc. 445, 581–603 (2014)

    ADS  Google Scholar 

  • P.F. Hopkins, A. Wetzel, D. Kereš et al., FIRE-2 simulations: physics versus numerics in galaxy formation. Mon. Not. R. Astron. Soc. 480(1), 800–863 (2018)

    ADS  Google Scholar 

  • T. Hosokawa, S.S.R. Offner, M.R. Krumholz, On the reliability of stellar ages and age spreads inferred from pre-main-sequence evolutionary models. Astrophys. J. 738(2), 140 (2011)

    ADS  Google Scholar 

  • F. Hoyle, On the fragmentation of gas clouds into galaxies and stars. Astrophys. J. 118, 513 (1953)

    ADS  Google Scholar 

  • F. Hoyle, G.R.A. Ellis, On the existence of an ionized layer about the galactic plane. Aust. J. Phys. 16, 1 (1963)

    ADS  Google Scholar 

  • N. Indriolo, B.J. McCall, Cosmic-ray astrochemistry. Chem. Soc. Rev. 42, 7763–7773 (2013)

    ADS  Google Scholar 

  • T. Inoue, I. Si, H. Koyama, Structure and stability of phase transition layers in the interstellar medium. Astrophys. J. 652(2), 1331–1338 (2006)

    ADS  Google Scholar 

  • T. Inoue, I. Si, H. Koyama, The role of ambipolar diffusion in the formation process of moderately magnetized diffuse clouds. Astrophys. J. 658, L99–L102 (2007)

    ADS  Google Scholar 

  • S. Jagannathan, D.A. Donzis, Reynolds and Mach number scaling in solenoidally-forced compressible turbulence using high-resolution direct numerical simulations. J. Fluid Mech. 789, 669–707 (2016)

    ADS  MathSciNet  Google Scholar 

  • J.H. Jeans, The stability of a spherical nebula. R. Soc. Lond. Philos. Trans. Ser. A 199, 1–53 (1902)

    ADS  MATH  Google Scholar 

  • S.M.R. Jeffreson, J.M.D. Kruijssen, A general theory for the lifetimes of giant molecular clouds under the influence of galactic dynamics. Mon. Not. R. Astron. Soc. 476, 3688–3715 (2018)

    ADS  Google Scholar 

  • E.B. Jenkins, The fractional ionization of the warm neutral interstellar medium. Astrophys. J. 764(1), 25 (2013)

    ADS  Google Scholar 

  • S.W. Jha, K. Maguire, M. Sullivan, Observational properties of thermonuclear supernovae. Nat. Astron. 3, 706–716 (2019)

    ADS  Google Scholar 

  • M.R. Joung, M.M. Mac Low, G.L. Bryan, Dependence of interstellar turbulent pressure on supernova rate. Astrophys. J. 704(1), 137–149 (2009)

    ADS  Google Scholar 

  • M. Jura, Interstellar clouds containing optically thin \(\text{H}_{2}\). Astrophys. J. 197, 575–580 (1975)

    ADS  Google Scholar 

  • J. Kainulainen, H. Beuther, T. Henning et al., Probing the evolution of molecular cloud structure. From quiescence to birth. Astron. Astrophys. 508, L35–L38 (2009)

    ADS  Google Scholar 

  • P.M.W. Kalberla, J. Kerp, The Hi distribution of the Milky Way. Annu. Rev. Astron. Astrophys. 47(1), 27–61 (2009)

    ADS  Google Scholar 

  • R.C. Kennicutt Jr., The star formation law in galactic disks. Astrophys. J. 344, 685–703 (1989)

    ADS  Google Scholar 

  • R.C. Kennicutt Jr., The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998)

    ADS  Google Scholar 

  • R.C. Kennicutt Jr., D. Calzetti, F. Walter et al., Star formation in NGC 5194 (M51a). II. The spatially resolved star formation law. Astrophys. J. 671, 333–348 (2007)

    ADS  Google Scholar 

  • R.C. Kennicutt, N.J. Evans, Star formation in the Milky Way and nearby galaxies. Annu. Rev. Astron. Astrophys. 50, 531–608 (2012)

    ADS  Google Scholar 

  • A. Khintchine, Korrelationstheorie der stationären stochastischen Prozesse. Math. Ann. 109, 604–615 (1934). http://eudml.org/doc/159698

    MathSciNet  MATH  Google Scholar 

  • S. Kida, S.A. Orszag, Energy and spectral dynamics in forced compressible turbulence. J. Sci. Comput. 5, 85–125 (1990)

    MATH  Google Scholar 

  • S. Kida, S.A. Orszag, Energy and spectral dynamics in decaying compressible turbulence. J. Sci. Comput. 7, 1–34 (1992)

    MathSciNet  MATH  Google Scholar 

  • J.G. Kim, W.T. Kim, Instability of evaporation fronts in the interstellar medium. Astrophys. J. 779(1), 48 (2013)

    ADS  Google Scholar 

  • C.G. Kim, E.C. Ostriker, Momentum injection by supernovae in the interstellar medium. Astrophys. J. 802, 99 (2015)

    ADS  Google Scholar 

  • J. Kim, D. Ryu, Density power spectrum of compressible hydrodynamic turbulent flows. Astrophys. J. 630(1), L45–L48 (2005)

    ADS  Google Scholar 

  • R.S. Klessen, A. Burkert, The formation of stellar clusters: Gaussian cloud conditions. II. Astrophys. J. 549, 386–401 (2001)

    ADS  Google Scholar 

  • R.S. Klessen, S.C.O. Glover, Physical Processes in the Interstellar Medium. Saas-Fee Advanced Course, vol. 43 (2016), p. 85

    Google Scholar 

  • R.S. Klessen, P. Hennebelle, Accretion-driven turbulence as universal process: galaxies, molecular clouds, and protostellar disks. Astron. Astrophys. 520, A17 (2010)

    ADS  Google Scholar 

  • A. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301–305 (1941a)

    ADS  MathSciNet  Google Scholar 

  • A.N. Kolmogorov, Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16 (1941b)

    ADS  MathSciNet  MATH  Google Scholar 

  • L.S.G. Kovásznay, Turbulence in supersonic flow. J. Aeronaut. Sci. 20(10), 657–674 (1953). https://doi.org/10.2514/8.2793

    Article  MATH  Google Scholar 

  • G. Kowal, A. Lazarian, Scaling relations of compressible MHD turbulence. Astrophys. J. 666(2), L69–L72 (2007)

    ADS  Google Scholar 

  • H. Koyama, S.I. Inutsuka, Molecular cloud formation in shock-compressed layers. Astrophys. J. 532, 980–993 (2000)

    ADS  Google Scholar 

  • R.P. Kraft, Studies of stellar rotation. V. The dependence of rotation on age among solar-type stars. Astrophys. J. 150, 551 (1967)

    ADS  Google Scholar 

  • R.H. Kraichnan, On the statistical mechanics of an adiabatically compressible fluid. J. Acoust. Soc. Am. 27(3), 438 (1955)

    ADS  MathSciNet  Google Scholar 

  • K. Kreckel, C. Faesi, J.M.D. Kruijssen et al., A 50 pc scale view of star formation efficiency across NGC 628. Astrophys. J. 863, L21 (2018)

    ADS  Google Scholar 

  • A.G. Kritsuk, Energy transfer and spectra in simulations of two-dimensional compressible turbulence, in ERCOFTAC Series, vol. 26 (Springer, Basel, 2019), pp. 61–70

    Google Scholar 

  • A.G. Kritsuk, S. Banerjee, Energy transfer in subsonic isothermal turbulence. Phys. Rev. Fluids (2020, in preparation)

  • A.G. Kritsuk, M.L. Norman, Interstellar phase transitions stimulated by time-dependent heating. Astrophys. J. 580(1), L51–L55 (2002)

    ADS  Google Scholar 

  • A.G. Kritsuk, M.L. Norman, P. Padoan, Adaptive mesh refinement for supersonic molecular cloud turbulence. Astrophys. J. 638(1), L25–L28 (2006a)

    ADS  Google Scholar 

  • A.G. Kritsuk, R. Wagner, M.L. Norman et al., High resolution simulations of supersonic turbulence in molecular clouds. Astron. Soc. Pac. Conf. Ser. 359, p 84 (2006b)

    ADS  Google Scholar 

  • A.G. Kritsuk, M.L. Norman, P. Padoan et al., The statistics of supersonic isothermal turbulence. Astrophys. J. 665(1), 416–431 (2007a)

    ADS  Google Scholar 

  • A.G. Kritsuk, P. Padoan, R. Wagner et al., Scaling laws and intermittency in highly compressible turbulence, in Turbulence and Nonlinear Processes in Astrophysical Plasmas, ed. by D. Shaikh, G.P. Zank. American Institute of Physics Conference Series, vol. 932 (2007b), pp. 393–399

    Google Scholar 

  • A.G. Kritsuk, S.D. Ustyugov, M.L. Norman et al., Simulating supersonic turbulence in magnetized molecular clouds. J. Phys. Conf. Ser. 180, 012020 (2009)

    Google Scholar 

  • A.G. Kritsuk, S.D. Ustyugov, M.L. Norman et al., Self-organization in turbulent molecular clouds: compressional versus solenoidal modes. Astron. Soc. Pac. Conf. Ser. 429, p 15 (2010)

    ADS  Google Scholar 

  • A.G. Kritsuk, C.T. Lee, M.L. Norman, A supersonic turbulence origin of Larson’s laws. Mon. Not. R. Astron. Soc. 436(4), 3247–3261 (2013a)

    ADS  Google Scholar 

  • A.G. Kritsuk, R. Wagner, M.L. Norman, Energy cascade and scaling in supersonic isothermal turbulence. J. Fluid Mech. 729, R1 (2013b)

    ADS  MathSciNet  MATH  Google Scholar 

  • A.G. Kritsuk, R. Wagner, M.L. Norman, Scaling in Supersonic Isothermal Turbulence. Astronomical Society of the Pacific Conference Series, vol. 498 (2015), p. 16

    Google Scholar 

  • A.G. Kritsuk, S.D. Ustyugov, M.L. Norman, The structure and statistics of interstellar turbulence. New J. Phys. 19(6), 065003 (2017)

    ADS  MathSciNet  Google Scholar 

  • P. Kroupa, On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001)

    ADS  Google Scholar 

  • J.M.D. Kruijssen, On the fraction of star formation occurring in bound stellar clusters. Mon. Not. R. Astron. Soc. 426, 3008–3040 (2012)

    ADS  Google Scholar 

  • J.M.D. Kruijssen, S.N. Longmore, An uncertainty principle for star formation - I. Why galactic star formation relations break down below a certain spatial scale. Mon. Not. R. Astron. Soc. 439, 3239–3252 (2014)

    ADS  Google Scholar 

  • J.M.D. Kruijssen, T. Maschberger, N. Moeckel et al., The dynamical state of stellar structure in star-forming regions. Mon. Not. R. Astron. Soc. 419, 841–853 (2012)

    ADS  Google Scholar 

  • J.M.D. Kruijssen, A. Schruba, A.P.S. Hygate et al., An uncertainty principle for star formation - II. A new method for characterizing the cloud-scale physics of star formation and feedback across cosmic history. Mon. Not. R. Astron. Soc. 479, 1866–1952 (2018)

    ADS  Google Scholar 

  • J.M.D. Kruijssen, A. Schruba, M. Chevance et al., Fast and inefficient star formation due to short-lived molecular clouds and rapid feedback. Nature 569(7757), 519–522 (2019)

    ADS  Google Scholar 

  • M.R. Krumholz, C. Federrath, The role of magnetic fields in setting the star formation rate and the initial mass function. Front. Astron. Space Sci. 6, 7 (2019)

    ADS  Google Scholar 

  • M.R. Krumholz, C.F. McKee, R.I. Klein, How protostellar outflows help massive stars form. Astrophys. J. 618(1), L33–L36 (2005)

    ADS  Google Scholar 

  • M.R. Krumholz, R.I. Klein, C.F. McKee et al., The formation of massive star systems by accretion. Science 323(5915), 754 (2009a)

    ADS  Google Scholar 

  • M.R. Krumholz, C.F. McKee, J. Tumlinson, The atomic-to-molecular transition in galaxies. II: H I and \(\text{H}_{2}\) column densities. Astrophys. J. 693, 216–235 (2009b)

    ADS  Google Scholar 

  • M.R. Krumholz, C.F. McKee, J. Tumlinson, The star formation law in atomic and molecular gas. Astrophys. J. 699, 850–856 (2009c)

    ADS  Google Scholar 

  • M.R. Krumholz, A.K. Leroy, C.F. McKee, Which phase of the interstellar medium correlates with the star formation rate? Astrophys. J. 731(1), 25 (2011)

    ADS  Google Scholar 

  • M.R. Krumholz, A. Dekel, C.F. McKee, A universal, local star formation law in galactic clouds, nearby galaxies, high-redshift disks, and starbursts. Astrophys. J. 745, 69 (2012)

    ADS  Google Scholar 

  • M.R. Krumholz, B. Burkhart, J.C. Forbes et al., A unified model for galactic discs: star formation, turbulence driving, and mass transport. Mon. Not. R. Astron. Soc. 477(2), 2716–2740 (2018)

    ADS  Google Scholar 

  • M.R. Krumholz, C.F. McKee, J. Bland-Hawthorn, Star clusters across cosmic time. Annu. Rev. Astron. Astrophys. 57, 227–303 (2019)

    ADS  Google Scholar 

  • G.F. Krymskii, A regular mechanism for the acceleration of charged particles on the front of a shock wave. Dokl. Akad. Nauk SSSR 234, 1306–1308 (1977)

    ADS  Google Scholar 

  • R. Kulsrud, W.P. Pearce, The effect of wave-particle interactions on the propagation of cosmic rays. Astrophys. J. 156, 445 (1969)

    ADS  Google Scholar 

  • C.J. Lada, E.A. Lada, Embedded clusters in molecular clouds. Annu. Rev. Astron. Astrophys. 41, 57–115 (2003)

    ADS  Google Scholar 

  • C.J. Lada, M. Lombardi, C. Roman-Zuniga et al., Schmidt’s conjecture and star formation in molecular clouds. Astrophys. J. 778(2), 133 (2013)

    ADS  Google Scholar 

  • H.J.G.L.M. Lamers, J.P. Cassinelli, Introduction to Stellar Winds (1999)

    Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Fluid Mechanics (1987)

    Google Scholar 

  • W. Langer, The carbon monoxide abundance in interstellar clouds. Astrophys. J. 206, 699–712 (1976)

    ADS  Google Scholar 

  • R.B. Larson, Numerical calculations of the dynamics of collapsing proto-star. Mon. Not. R. Astron. Soc. 145, 271 (1969)

    ADS  Google Scholar 

  • R.B. Larson, Turbulence and star formation in molecular clouds. Mon. Not. R. Astron. Soc. 194, 809–826 (1981)

    ADS  Google Scholar 

  • R.B. Larson, Cloud fragmentation and stellar masses. Mon. Not. R. Astron. Soc. 214, 379–398 (1985)

    ADS  Google Scholar 

  • W.B. Latter, J.H. Black, Molecular hydrogen formation by excited atom radiative association. Astrophys. J. 372, 161 (1991)

    ADS  Google Scholar 

  • A. Lazarian, G.L. Eyink, A. Jafari et al., 3d turbulent reconnection: theory, tests, and astrophysical implications. Phys. Plasmas 27(1), 012305 (2020). https://doi.org/10.1063/1.5110603

    Article  ADS  Google Scholar 

  • J. Le Bourlot, F. Le Petit, C. Pinto et al., Surface chemistry in the interstellar medium. I. \(\text{H}_{2}\) formation by Langmuir-Hinshelwood and Eley-Rideal mechanisms. Astron. Astrophys. 541, A76 (2012)

    Google Scholar 

  • C.F. Lee, N. Hirano, A. Palau et al., Rotation and outflow motions in the very low-mass class 0 protostellar system HH 211 at subarcsecond resolution. Astrophys. J. 699(2), 1584–1594 (2009)

    ADS  Google Scholar 

  • A. Lees, H. Aluie, Baropycnal work: a mechanism for energy transfer across scales. Fluids 4(2), 92 (2019). https://doi.org/10.3390/fluids4020092

    Article  Google Scholar 

  • S.K. Lele, Compressibility effects on turbulence. Annu. Rev. Fluid Mech. 26, 211–254 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  • J. Lequeux, The Interstellar Medium (2005)

    Google Scholar 

  • A.K. Leroy, F. Walter, K. Sandstrom et al., Molecular gas and star formation in nearby disk galaxies. Astron. J. 146, 19 (2013)

    ADS  Google Scholar 

  • C.M. Leung, Radiation transport in dense interstellar dust clouds. Astrophys. J. 199, 340–360 (1975)

    ADS  Google Scholar 

  • D.J. Leverett, J.L. Greenstein, The polarization of starlight by aligned dust grains. Astrophys. J. 114, 206 (1951)

    ADS  Google Scholar 

  • P.S. Li, A. Myers, C.F. McKee, Ambipolar diffusion heating in turbulent systems. Astrophys. J. 760(1), 33 (2012)

    ADS  Google Scholar 

  • M.J. Lighthill, The effect of compressibility on turbulence, in Gas Dynamics of Cosmic Clouds. IAU Symposium, vol. 2 (1955), p. 121

    Google Scholar 

  • G. Liu, J. Koda, D. Calzetti et al., The super-linear slope of the spatially resolved star formation law in NGC 3521 and NGC 5194 (M51a). Astrophys. J. 735, 63 (2011)

    ADS  Google Scholar 

  • S.N. Longmore, J.M.D. Kruijssen, N. Bastian et al., The formation and early evolution of young massive clusters, in Protostars and Planets VI (2014), pp. 291–314

    Google Scholar 

  • X. Lu, Q. Zhang, H.B. Liu et al., Filamentary fragmentation and accretion in high-mass star-forming molecular clouds. Astrophys. J. 855(1), 9 (2018)

    ADS  Google Scholar 

  • L.B. Lucy, P.M. Solomon, Mass loss by hot stars. Astrophys. J. 159, 879 (1970)

    ADS  Google Scholar 

  • M.M. Mac Low, The energy dissipation rate of supersonic, magnetohydrodynamic turbulence in molecular clouds. Astrophys. J. 524(1), 169–178 (1999)

    ADS  Google Scholar 

  • M.M. Mac Low, R.S. Klessen, Control of star formation by supersonic turbulence. Rev. Mod. Phys. 76, 125–194 (2004)

    ADS  Google Scholar 

  • M.M. Mac Low, R.S. Klessen, A. Burkert et al., Kinetic energy decay rates of supersonic and super-Alfvénic turbulence in star-forming clouds. Phys. Rev. Lett. 80(13), 2754–2757 (1998)

    ADS  Google Scholar 

  • M.N. Machida, T. Hosokawa, Evolution of protostellar outflow around low-mass protostar. Mon. Not. R. Astron. Soc. 431(2), 1719–1744 (2013)

    ADS  Google Scholar 

  • M.N. Machida, I. Si, T. Matsumoto, High- and low-velocity magnetized outflows in the star formation process in a gravitationally collapsing cloud. Astrophys. J. 676(2), 1088–1108 (2008)

    ADS  Google Scholar 

  • B.F. Madore, Numerical simulations of the rate of star formation in external galaxies. Mon. Not. R. Astron. Soc. 178, 1–9 (1977)

    ADS  Google Scholar 

  • U. Maio, K. Dolag, B. Ciardi et al., Metal and molecule cooling in simulations of structure formation. Mon. Not. R. Astron. Soc. 379(3), 963–973 (2007)

    ADS  Google Scholar 

  • A. Marcowith, A. Bret, A. Bykov et al., The microphysics of collisionless shock waves. Rep. Prog. Phys. 79(4), 046901 (2016)

    ADS  Google Scholar 

  • H. Masunaga, I. Si, A radiation hydrodynamic model for protostellar collapse. II. The second collapse and the birth of a protostar. Astrophys. J. 531(1), 350–365 (2000)

    ADS  Google Scholar 

  • J.S. Mathis, W. Rumpl, K.H. Nordsieck, The size distribution of interstellar grains. Astrophys. J. 217, 425–433 (1977)

    ADS  Google Scholar 

  • P.A. Mazzali, A.I. McFadyen, S.E. Woosley et al., An upper limit to the energy of gamma-ray bursts indicates that GRBs/SNe are powered by magnetars. Mon. Not. R. Astron. Soc. 443, 67–71 (2014)

    ADS  Google Scholar 

  • C.F. McKee, J.P. Ostriker, A theory of the interstellar medium - three components regulated by supernova explosions in an inhomogeneous substrate. Astrophys. J. 218, 148–169 (1977)

    ADS  Google Scholar 

  • C.F. McKee, E.C. Ostriker, Theory of star formation. Annu. Rev. Astron. Astrophys. 45(1), 565–687 (2007). https://doi.org/10.1146/annurev.astro.45.051806.110602

    Article  ADS  Google Scholar 

  • C.F. McKee, E.G. Zweibel, On the virial theorem for turbulent molecular clouds. Astrophys. J. 399, 551 (1992)

    ADS  Google Scholar 

  • M. Micic, S.C.O. Glover, C. Federrath et al., Modelling \(\text{H}_{2}\) formation in the turbulent interstellar medium: solenoidal versus compressive turbulent forcing. Mon. Not. R. Astron. Soc. 421(3), 2531–2542 (2012)

    ADS  Google Scholar 

  • E.J. Mierkiewicz, R.J. Reynolds, F.L. Roesler et al., Detection of diffuse interstellar [O II] emission from the Milky Way using spatial heterodyne spectroscopy. Astrophys. J. 650(1), L63–L66 (2006)

    ADS  Google Scholar 

  • D. Mihalas, B.W. Mihalas, Foundations of Radiation Hydrodynamics (1984)

    MATH  Google Scholar 

  • R. Minkowski, Spectra of supernovae. Publ. Astron. Soc. Pac. 53(314), 224 (1941)

    ADS  Google Scholar 

  • A. Mittal, S.S. Girimaji, Mathematical framework for analysis of internal energy dynamics and spectral distribution in compressible turbulent flows. Phys. Rev. Fluids 4, 042601 (2019). https://doi.org/10.1103/PhysRevFluids.4.042601

    Article  ADS  Google Scholar 

  • H. Miura, S. Kida, Acoustic energy exchange in compressible turbulence. Phys. Fluids 7(7), 1732–1742 (1995)

    ADS  MATH  Google Scholar 

  • M.A. Miville-Deschênes, N. Murray, E.J. Lee, Physical properties of molecular clouds for the entire Milky Way disk. Astrophys. J. 834, 57 (2017)

    ADS  Google Scholar 

  • F.Z. Molina, S.C.O. Glover, C. Federrath et al., The density variance-Mach number relation in supersonic turbulence - I. Isothermal, magnetized gas. Mon. Not. R. Astron. Soc. 423, 2680–2689 (2012)

    ADS  Google Scholar 

  • G. Momferratos, P. Lesaffre, E. Falgarone et al., Turbulent energy dissipation and intermittency in ambipolar diffusion magnetohydrodynamics. Mon. Not. R. Astron. Soc. 443(1), 86–101 (2014)

    ADS  Google Scholar 

  • M. Morris, E. Serabyn, The galactic center environment. Annu. Rev. Astron. Astrophys. 34, 645–702 (1996)

    ADS  Google Scholar 

  • T.C. Mouschovias, E.V. Paleologou, Ambipolar diffusion in interstellar clouds - time-dependent solutions in one spatial dimension. Astrophys. J. 246, 48–64 (1981)

    ADS  Google Scholar 

  • T.C. Mouschovias, L. Spitzer Jr., Note on the collapse of magnetic interstellar clouds. Astrophys. J. 210, 326–+ (1976)

    ADS  Google Scholar 

  • J.E. Moyal, The spectra of turbulence in a compressible fluid; eddy turbulence and random noise. Math. Proc. Camb. Philos. Soc. 48(2), 329–344 (1952)

    ADS  MathSciNet  MATH  Google Scholar 

  • B. Müller, A. Heger, D. Liptai et al., A simple approach to the supernova progenitor-explosion connection. Mon. Not. R. Astron. Soc. 460(1), 742–764 (2016)

    ADS  Google Scholar 

  • T. Naab, J.P. Ostriker, Theoretical challenges in galaxy formation. Annu. Rev. Astron. Astrophys. 55, 59–109 (2017)

    ADS  Google Scholar 

  • T. Nagai, I. Si, S.M. Miyama, An origin of filamentary structure in molecular clouds. Astrophys. J. 506(1), 306–322 (1998)

    ADS  Google Scholar 

  • F. Nakamura, Z.Y. Li, Protostellar turbulence driven by collimated outflows. Astrophys. J. 662(1), 395–412 (2007)

    ADS  Google Scholar 

  • T. Nakano, T. Nakamura, Gravitational instability of magnetized gaseous disks 6. Publ. Astron. Soc. Jpn. 30, 671–680 (1978)

    ADS  Google Scholar 

  • A.M. Obukhov, On the distribution of energy in the spectrum of turbulent flow. Dokl. Akad. Nauk SSSR 32, 22–24 (1941)

    Google Scholar 

  • S.S.R. Offner, H.G. Arce, Investigations of protostellar outflow launching and gas entrainment: hydrodynamic simulations and molecular emission. Astrophys. J. 784(1), 61 (2014)

    ADS  Google Scholar 

  • S.S.R. Offner, J. Chaban, Impact of protostellar outflows on turbulence and star formation efficiency in magnetized dense cores. Astrophys. J. 847(2), 104 (2017)

    ADS  Google Scholar 

  • S.S.R. Offner, C.F. McKee, The protostellar luminosity function. Astrophys. J. 736(1), 53 (2011)

    ADS  Google Scholar 

  • S.S.R. Offner, P.C. Clark, P. Hennebelle et al., The origin and universality of the stellar initial mass function, in Protostars and Planets VI (2014), pp. 53–75

    Google Scholar 

  • L. Onsager, Statistical hydrodynamics. Nuovo Cimento 6(2), 279–287 (1949)

    MathSciNet  Google Scholar 

  • B.D. Oppenheimer, J. Schaye, Non-equilibrium ionization and cooling of metal-enriched gas in the presence of a photoionization background. Mon. Not. R. Astron. Soc. 434(2), 1043–1062 (2013)

    ADS  Google Scholar 

  • J.H. Orkisz, J. Pety, M. Gerin et al., Turbulence and star formation efficiency in molecular clouds: solenoidal versus compressive motions in Orion B. Astron. Astrophys. 599, A99 (2017)

    Google Scholar 

  • M.E. Orr, C.C. Hayward, P.F. Hopkins et al., What FIREs up star formation: the emergence of the Kennicutt-Schmidt law from feedback. Mon. Not. R. Astron. Soc. 478(3), 3653–3673 (2018)

    ADS  Google Scholar 

  • D.E. Osterbrock, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (1989)

    Google Scholar 

  • J. Ostriker, The equilibrium of polytropic and isothermal cylinders. Astrophys. J. 140, 1056 (1964)

    ADS  MathSciNet  Google Scholar 

  • E.C. Ostriker, R. Shetty, Maximally star-forming galactic disks. I. Starburst regulation via feedback-driven turbulence. Astrophys. J. 731, 41 (2011)

    ADS  Google Scholar 

  • E.C. Ostriker, F.H. Shu, Magnetocentrifugally driven flows from young stars and disks. IV. The accretion funnel and dead zone. Astrophys. J. 447, 813 (1995)

    ADS  Google Scholar 

  • E.C. Ostriker, C.F. McKee, A.K. Leroy, Regulation of star formation rates in multiphase galactic disks: a thermal/dynamical equilibrium model. Astrophys. J. 721, 975–994 (2010)

    ADS  Google Scholar 

  • P. Padoan, E. Zweibel, Å. Nordlund, Ambipolar drift heating in turbulent molecular clouds. Astrophys. J. 540(1), 332–341 (2000)

    ADS  Google Scholar 

  • P. Padoan, R. Jimenez, Å. Nordlund et al., Structure function scaling in compressible super-Alfvénic MHD turbulence. Phys. Rev. Lett. 92(19), 191102 (2004)

    ADS  Google Scholar 

  • P. Padoan, C. Federrath, G. Chabrier et al., The star formation rate of molecular clouds, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond et al. (2014), p. 77

    Google Scholar 

  • M. Padovani, D. Galli, Effects of magnetic fields on the cosmic-ray ionization of molecular cloud cores. Astron. Astrophys. 530, A109 (2011)

    ADS  MATH  Google Scholar 

  • M. Padovani, D. Galli, A.E. Glassgold, Cosmic-ray ionization of molecular clouds. Astron. Astrophys. 501, 619–631 (2009)

    ADS  Google Scholar 

  • M. Padovani, P. Hennebelle, D. Galli, Cosmic-ray ionisation in collapsing clouds. Astron. Astrophys. 560, A114 (2013)

    ADS  Google Scholar 

  • M. Padovani, A.V. Ivlev, D. Galli et al., Cosmic-ray ionisation in circumstellar discs. Astron. Astrophys. 614, A111 (2018)

    ADS  Google Scholar 

  • A. Palau, L.A. Zapata, C.G. Román-Zúñiga et al., Thermal jeans fragmentation within 1000 au in OMC-1S. Astrophys. J. 855(1), 24 (2018)

    ADS  Google Scholar 

  • L. Pan, P. Padoan, The temperature of interstellar clouds from turbulent heating. Astrophys. J. 692(1), 594–607 (2009)

    ADS  Google Scholar 

  • L. Pan, P. Padoan, T. Haugbølle et al., Supernova driving. II. Compressive ratio in molecular-cloud turbulence. Astrophys. J. 825(1), 30 (2016)

    ADS  Google Scholar 

  • A. Pardi, P. Girichidis, T. Naab et al., The impact of magnetic fields on the chemical evolution of the supernova-driven ISM. Mon. Not. R. Astron. Soc. 465, 4611–4633 (2017)

    ADS  Google Scholar 

  • E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 (1958)

    ADS  Google Scholar 

  • K. Pattle, L. Fissel, Submillimeter and far-infrared polarimetric observations of magnetic fields in star-forming regions. Front. Astron. Space Sci. 6, 15 (2019)

    ADS  Google Scholar 

  • G. Pelletier, R.E. Pudritz, Hydromagnetic disk winds in young stellar objects and active galactic nuclei. Astrophys. J. 394, 117 (1992)

    ADS  Google Scholar 

  • M.V. Penston, Dynamics of self-gravitating gaseous spheres-III. Analytical results in the free-fall of isothermal cases. Mon. Not. R. Astron. Soc. 144, 425 (1969)

    ADS  Google Scholar 

  • T. Peters, R.S. Klessen, M. Mac Low et al., Limiting accretion onto massive stars by fragmentation-induced starvation. Astrophys. J. 725, 134–145 (2010a)

    ADS  Google Scholar 

  • T. Peters, M. Mac Low, R. Banerjee et al., Understanding spatial and spectral morphologies of ultracompact H II regions. Astrophys. J. 719, 831–843 (2010b)

    ADS  Google Scholar 

  • T. Peters, P.D. Klaassen, M.M. Mac Low et al., Collective outflow from a small multiple stellar system. Astrophys. J. 788, 14 (2014)

    ADS  Google Scholar 

  • J.L. Pineda, W.D. Langer, T. Velusamy et al., A Herschel [C ii] galactic plane survey. I. The global distribution of ISM gas components. Astron. Astrophys. 554, A103 (2013)

    ADS  Google Scholar 

  • R.A. Piontek, E.C. Ostriker, Thermal and magnetorotational instability in the interstellar medium: two-dimensional numerical simulations. Astrophys. J. 601, 905–920 (2004)

    ADS  Google Scholar 

  • D.H. Porter, P.R. Woodward, A. Pouquet, Inertial range structures in decaying compressible turbulent flows. Phys. Fluids 10(1), 237–245 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  • D. Porter, A. Pouquet, P. Woodward, Measures of intermittency in driven supersonic flows. Phys. Rev. E 66(2), 026301 (2002)

    ADS  Google Scholar 

  • S.S. Prasad, S.P. Tarafdar, UV radiation field inside dense clouds - its possible existence and chemical implications. Astrophys. J. 267, 603–609 (1983)

    ADS  Google Scholar 

  • D.J. Price, T.S. Tricco, M.R. Bate, Collimated jets from the first core. Mon. Not. R. Astron. Soc. 423(1), L45–L49 (2012)

    ADS  Google Scholar 

  • M.J. Rees, Opacity-limited hierarchical fragmentation and the masses of protostars. Mon. Not. R. Astron. Soc. 176, 483–486 (1976)

    ADS  Google Scholar 

  • B. Reipurth, J. Bally, Herbig-Haro flows: probes of early stellar evolution. Annu. Rev. Astron. Astrophys. 39, 403–455 (2001)

    ADS  Google Scholar 

  • R.J. Reynolds, The column density and scale height of free electrons in the galactic disk. Astrophys. J. 339, L29 (1989)

    ADS  Google Scholar 

  • R.J. Reynolds, F. Scherb, F.L. Roesler, Observations of diffuse galactic HA and [N II] emission. Astrophys. J. 185, 869–876 (1973)

    ADS  Google Scholar 

  • L. Richardson, Weather Prediction by Numerical Process. Dover Books Explaining Science (Dover, New York, 1965). https://books.Google.com/books?id=I4u_AAAAIAAJ

    MATH  Google Scholar 

  • A.J. Richings, J. Schaye, B.D. Oppenheimer, Non-equilibrium chemistry and cooling in the diffuse interstellar medium - I. Optically thin regime. Mon. Not. R. Astron. Soc. 440(4), 3349–3369 (2014)

    ADS  Google Scholar 

  • T.P. Robitaille, HYPERION: an open-source parallelized three-dimensional dust continuum radiative transfer code. Astron. Astrophys. 536, A79 (2011)

    ADS  Google Scholar 

  • L.F. Rodriguez, J.M. Moran, P.T.P. Ho et al., Radio observations of water vapor, hydroxyl, silicon monoxide, ammonia, carbon monoxide, and compact H II regions in the vicinities of suspected Herbig-Haro objects. Astrophys. J. 235, 845–865 (1980)

    ADS  Google Scholar 

  • H. Rogers, J.M. Pittard, Feedback from winds and supernovae in massive stellar clusters - I. Hydrodynamics. Mon. Not. R. Astron. Soc. 431(2), 1337–1351 (2013)

    ADS  Google Scholar 

  • J.E. Roser, S. Swords, G. Vidali et al., Measurement of the kinetic energy of hydrogen molecules desorbing from amorphous water ice. Astrophys. J. 596(1), L55–L58 (2003)

    ADS  Google Scholar 

  • G.B. Rybicki, A.P. Lightman, Radiative Processes in Astrophysics (1986)

    Google Scholar 

  • P. Sagaut, C. Cambon, Homogeneous Turbulence Dynamics, 2nd edn., vol. 11 (Springer, Cham, 2018), p. 6330

    MATH  Google Scholar 

  • E.E. Salpeter, The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955)

    ADS  Google Scholar 

  • S. Sarkar, G. Erlebacher, M.Y. Hussaini et al., The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473–493 (1991)

    ADS  MATH  Google Scholar 

  • J. Schaye, Star formation thresholds and galaxy edges: why and where. Astrophys. J. 609, 667–682 (2004)

    ADS  Google Scholar 

  • E. Schinnerer, A. Hughes, A. Leroy et al., The gas-star formation cycle in nearby star-forming galaxies. I. Assessment of multi-scale variations. Astrophys. J. 887(1), 49 (2019)

    ADS  Google Scholar 

  • M. Schmidt, The rate of star formation. Astrophys. J. 129, 243 (1959)

    ADS  Google Scholar 

  • W. Schmidt, P. Grete, Kinetic and internal energy transfer in implicit large-eddy simulations of forced compressible turbulence. Phys. Rev. E 100(4), 043116 (2019)

    ADS  Google Scholar 

  • W. Schmidt, C. Federrath, R. Klessen, Is the scaling of supersonic turbulence universal? Phys. Rev. Lett. 101, 194505 (2008). https://doi.org/10.1103/PhysRevLett.101.194505

    Article  ADS  Google Scholar 

  • N. Schneider, S. Bontemps, P. Girichidis et al., Detection of two power-law tails in the probability distribution functions of massive GMCs. Mon. Not. R. Astron. Soc. 453, L41–L45 (2015)

    ADS  Google Scholar 

  • F.L. Schöier, F.F.S. van der Tak, E.F. van Dishoeck et al., An atomic and molecular database for analysis of submillimetre line observations. Astron. Astrophys. 432(1), 369–379 (2005)

    ADS  Google Scholar 

  • A. Schruba, A.K. Leroy, F. Walter et al., The scale dependence of the molecular gas depletion time in M33. Astrophys. J. 722, 1699–1706 (2010)

    ADS  Google Scholar 

  • C. Schwarz, C. Beetz, J. Dreher et al., Lyapunov exponents and information dimension of the mass distribution in turbulent compressible flows. Phys. Lett. A 374(8), 1039–1042 (2010)

    ADS  MATH  Google Scholar 

  • D. Seifried, W. Schmidt, J.C. Niemeyer, Forced turbulence in thermally bistable gas: a parameter study. Astron. Astrophys. 526, A14 (2011)

    ADS  MATH  Google Scholar 

  • D. Seifried, R.E. Pudritz, R. Banerjee et al., Magnetic fields during the early stages of massive star formation - II. A generalized outflow criterion. Mon. Not. R. Astron. Soc. 422(1), 347–366 (2012)

    ADS  Google Scholar 

  • V.A. Semenov, A.V. Kravtsov, N.Y. Gnedin, The physical origin of long gas depletion times in galaxies. Astrophys. J. 845, 133–150 (2017)

    ADS  Google Scholar 

  • V.A. Semenov, A.V. Kravtsov, N.Y. Gnedin, The physical origin of long gas depletion times in galaxies. Astrophys. J. 870, 79–96 (2019)

    ADS  Google Scholar 

  • N.J. Shaviv, O. Regev, Interface dynamics and domain growth in thermally bistable fluids. Phys. Rev. E 50(3), 2048–2056 (1994)

    ADS  Google Scholar 

  • D.S. Shepherd, E. Churchwell, Bipolar molecular outflows in massive star formation regions. Astrophys. J. 472, 225 (1996)

    ADS  Google Scholar 

  • F.H. Shu, Self-similar collapse of isothermal spheres and star formation. Astrophys. J. 214, 488–497 (1977)

    ADS  Google Scholar 

  • F.H. Shu, The Physics of Astrophysics. Gas Dynamics, vol. 2 (1992)

    Google Scholar 

  • F.H. Shu, S. Lizano, S.P. Ruden et al., Mass loss from rapidly rotating magnetic protostars. Astrophys. J. 328, L19 (1988)

    ADS  Google Scholar 

  • F.H. Shu, J. Najita, E.C. Ostriker et al., Magnetocentrifugally driven flows from young stars and disks. V. Asymptotic collimation into jets. Astrophys. J. 455, L155 (1995)

    ADS  Google Scholar 

  • J. Skilling, A.W. Strong, Cosmic ray exclusion from dense molecular clouds. Astron. Astrophys. 53(2), 253–258 (1976)

    ADS  Google Scholar 

  • A.D. Slyz, J.E.G. Devriendt, G. Bryan et al., Towards simulating star formation in the interstellar medium. Mon. Not. R. Astron. Soc. 356, 737–752 (2005)

    ADS  Google Scholar 

  • S.J. Smartt, Progenitors of core-collapse supernovae. Annu. Rev. Astron. Astrophys. 47(1), 63–106 (2009)

    ADS  Google Scholar 

  • N. Smith, Mass loss: its effect on the evolution and fate of high-mass stars. Annu. Rev. Astron. Astrophys. 52, 487–528 (2014)

    ADS  Google Scholar 

  • R.L. Snell, R.B. Loren, R.L. Plambeck, Observations of CO in L 1551: evidence for stellar wind driven shocks. Astrophys. J. 239, L17–L22 (1980)

    ADS  Google Scholar 

  • R.S. Somerville, R. Davé, Physical models of galaxy formation in a cosmological framework. Annu. Rev. Astron. Astrophys. 53, 51–113 (2015)

    ADS  Google Scholar 

  • L. Spitzer Jr., The dynamics of the interstellar medium. III. Galactic distribution. Astrophys. J. 95, 329 (1942)

    ADS  MATH  Google Scholar 

  • H.C. Spruit, Essential magnetohydrodynamics for astrophysics, arXiv e-prints (2013). arXiv:1301.5572

  • A. Stacy, V. Bromm, Constraining the statistics of population III binaries. Mon. Not. R. Astron. Soc. 433(2), 1094–1107 (2013)

    ADS  Google Scholar 

  • A. Stacy, V. Bromm, A.T. Lee, Building up the population III initial mass function from cosmological initial conditions. Mon. Not. R. Astron. Soc. 462(2), 1307–1328 (2016)

    ADS  Google Scholar 

  • S.W. Stahler, F.H. Shu, R.E. Taam, The evolution of protostars. I - Global formulation and results. Astrophys. J. 241, 637–654 (1980)

    ADS  Google Scholar 

  • T.P. Stecher, D.A. Williams, Photodestruction of hydrogen molecules in H I regions. Astrophys. J. 149, L29 (1967)

    ADS  Google Scholar 

  • T.L. Stephens, A. Dalgarno, Kinetic energy in the spontaneous radiative dissociation of molecular hydrogen. Astrophys. J. 186, 165–168 (1973)

    ADS  Google Scholar 

  • A. Sternberg, A. Dalgarno, Chemistry in dense photon-dominated regions. Astrophys. J. Suppl. 99, 565 (1995)

    ADS  Google Scholar 

  • A. Sternberg, F. Le Petit, E. Roueff et al., H I-to-\(\text{H}_{2}\) transitions and H I column densities in galaxy star-forming regions. Astrophys. J. 790, 10 (2014)

    ADS  Google Scholar 

  • J.M. Stone, E.G. Zweibel, Ambipolar diffusion-mediated thermal fronts in the neutral interstellar medium. Astrophys. J. 724(1), 131–139 (2010)

    ADS  Google Scholar 

  • J.M. Stone, E.C. Ostriker, C.F. Gammie, Dissipation in compressible magnetohydrodynamic turbulence. Astrophys. J. 508(1), L99–L102 (1998)

    ADS  Google Scholar 

  • A.W. Strong, I.V. Moskalenko, V.S. Ptuskin, Cosmic-ray propagation and interactions in the galaxy. Annu. Rev. Nucl. Part. Sci. 57, 285–327 (2007)

    ADS  Google Scholar 

  • K. Subramanian, From primordial seed magnetic fields to the galactic dynamo. Galaxies 7(2), 47 (2019)

    ADS  Google Scholar 

  • J. Sun, A.K. Leroy, A. Schruba et al., Cloud-scale molecular gas properties in 15 nearby galaxies. Astrophys. J. 860, 172 (2018)

    ADS  Google Scholar 

  • H. Susa, The mass of the first stars. Astrophys. J. 773(2), 185 (2013)

    ADS  Google Scholar 

  • I.V. Sytine, D.H. Porter, P.R. Woodward et al., Convergence tests for the piecewise parabolic method and Navier-Stokes solutions for homogeneous compressible turbulence. J. Comput. Phys. 158(2), 225–238 (2000)

    ADS  MATH  Google Scholar 

  • S. Takahashi, P.T.P. Ho, P.S. Teixeira et al., Hierarchical fragmentation of the Orion molecular filaments. Astrophys. J. 763(1), 57 (2013)

    ADS  Google Scholar 

  • K.E.I. Tanaka, J.C. Tan, Y. Zhang, The impact of feedback during massive star formation by core accretion. Astrophys. J. 835(1), 32 (2017)

    ADS  Google Scholar 

  • M. Tegmark, J. Silk, M.J. Rees et al., How small were the first cosmological objects? Astrophys. J. 474, 1 (1997)

    ADS  Google Scholar 

  • A.G.G.M. Tielens, The Physics and Chemistry of the Interstellar Medium (2010)

    Google Scholar 

  • A.G.G.M. Tielens, D. Hollenbach, Photodissociation regions. I. Basic model. Astrophys. J. 291, 722–746 (1985)

    ADS  Google Scholar 

  • K. Tomida, K. Tomisaka, T. Matsumoto et al., Radiation magnetohydrodynamics simulation of proto-stellar collapse: two-component molecular outflow. Astrophys. J. 714(1), L58–L63 (2010)

    ADS  Google Scholar 

  • A. Toomre, On the gravitational stability of a disk of stars. Astrophys. J. 139, 1217–1238 (1964)

    ADS  Google Scholar 

  • T.H. Troland, R.M. Crutcher, Magnetic fields in dark cloud cores: Arecibo OH Zeeman observations. Astrophys. J. 680(1), 457–465 (2008)

    ADS  Google Scholar 

  • T.H. Troland, C. Heiles, Interstellar magnetic field strengths and gas densities observational and theoretical perspectives. Astrophys. J. 301, 339–345 (1986)

    ADS  Google Scholar 

  • P.C. van der Kruit, K.C. Freeman, Galaxy disks. Annu. Rev. Astron. Astrophys. 49(1), 301–371 (2011)

    ADS  Google Scholar 

  • F.F.S. van der Tak, E.F. van Dishoeck, Limits on the cosmic-ray ionization rate toward massive young stars. Astron. Astrophys. 358, L79–L82 (2000)

    ADS  Google Scholar 

  • E.F. van Dishoeck, Photodissociation processes of astrophysical molecules, in Astrochemistry, ed. by M.S. Vardya, S.P. Tarafdar. IAU Symposium, vol. 120 (1987), pp. 51–65

    Google Scholar 

  • E.F. van Dishoeck, J.H. Black, The photodissociation and chemistry of interstellar CO. Astrophys. J. 334, 771 (1988)

    ADS  Google Scholar 

  • S. van Loo, S.A.E.G. Falle, T.W. Hartquist et al., Shock-triggered formation of magnetically-dominated clouds. Astron. Astrophys. 471, 213–218 (2007)

    ADS  Google Scholar 

  • S. Veilleux, G. Cecil, J. Bland-Hawthorn, Galactic winds. Annu. Rev. Astron. Astrophys. 43, 769–826 (2005)

    ADS  Google Scholar 

  • J.S. Vink, A. de Koter, H.J.G.L.M. Lamers, Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001)

    ADS  Google Scholar 

  • R. Visser, E.F. van Dishoeck, J.H. Black, The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks. Astron. Astrophys. 503(2), 323–343 (2009)

    ADS  Google Scholar 

  • C.F. von Weizsäcker, The evolution of galaxies and stars. Astrophys. J. 114, 165 (1951)

    ADS  MathSciNet  Google Scholar 

  • R. Wagner, G. Falkovich, A.G. Kritsuk et al., Flux correlations in supersonic isothermal turbulence. J. Fluid Mech. 713, 482–490 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  • S.K. Walch, A.P. Whitworth, T. Bisbas et al., Dispersal of molecular clouds by ionizing radiation. Mon. Not. R. Astron. Soc. 427, 625–636 (2012)

    ADS  Google Scholar 

  • S. Walch, P. Girichidis, T. Naab et al., The SILCC (SImulating the Life-Cycle of molecular clouds) project - I. Chemical evolution of the supernova-driven ISM. Mon. Not. R. Astron. Soc. 454, 238–268 (2015)

    ADS  Google Scholar 

  • P. Wang, Z.Y. Li, T. Abel et al., Outflow feedback regulated massive star formation in parsec-scale cluster-forming clumps. Astrophys. J. 709(1), 27–41 (2010a)

    ADS  Google Scholar 

  • J. Wang, L.P. Wang, Z. Xiao et al., A hybrid numerical simulation of isotropic compressible turbulence. J. Comput. Phys. 229(13), 5257–5279 (2010b)

    ADS  MATH  Google Scholar 

  • J. Wang, Y. Shi, L.P. Wang et al., Scaling and statistics in three-dimensional compressible turbulence. Phys. Rev. Lett. 108(21), 214505 (2012)

    ADS  Google Scholar 

  • J. Wang, Y. Yang, Y. Shi et al., Cascade of kinetic energy in three-dimensional compressible turbulence. Phys. Rev. Lett. 110, 214505 (2013). https://doi.org/10.1103/PhysRevLett.110.214505

    Article  ADS  Google Scholar 

  • J. Wang, T. Gotoh, T. Watanabe, Scaling and intermittency in compressible isotropic turbulence. Phys. Rev. Fluids 2(5), 053401 (2017a)

    ADS  Google Scholar 

  • J. Wang, T. Gotoh, T. Watanabe, Shocklet statistics in compressible isotropic turbulence. Phys. Rev. Fluids 2(2), 023401 (2017b)

    ADS  Google Scholar 

  • J. Wang, T. Gotoh, T. Watanabe, Spectra and statistics in compressible isotropic turbulence. Phys. Rev. Fluids 2(1), 013403 (2017c)

    ADS  Google Scholar 

  • J. Wang, M. Wan, S. Chen et al., Cascades of temperature and entropy fluctuations in compressible turbulence. J. Fluid Mech. 867, 195–215 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  • J.L. Ward, J.M.D. Kruijssen, H.W. Rix, Not all stars form in clusters – \(Gaia\)-DR2 uncovers the origin of OB associations. Mon. Not. R. Astron. Soc. (2020). https://doi.org/10.1093/mnras/staa1056. arXiv:1910.06974

    Article  Google Scholar 

  • G.M. Webb, W.I. Axford, M.A. Forman, Cosmic-ray acceleration at stellar wind terminal shocks. Astrophys. J. 298, 684–709 (1985)

    ADS  Google Scholar 

  • E.J. Weber, D.J. Leverett, The angular momentum of the solar wind. Astrophys. J. 148, 217–227 (1967)

    ADS  Google Scholar 

  • J.C. Weingartner, B.T. Draine, Dust grain-size distributions and extinction in the Milky Way, large Magellanic Cloud, and Small Magellanic Cloud. Astrophys. J. 548(1), 296–309 (2001a)

    ADS  Google Scholar 

  • J.C. Weingartner, B.T. Draine, Photoelectric emission from interstellar dust: grain charging and gas heating. Astrophys. J. Suppl. 134(2), 263–281 (2001b)

    ADS  Google Scholar 

  • E.T. Whelan, T.P. Ray, L. Podio et al., Classical T Tauri-like outflow activity in the brown dwarf mass regime. Astrophys. J. 706(2), 1054–1068 (2009)

    ADS  Google Scholar 

  • T.G. White, M.T. Oliver, P. Mabey et al., Supersonic plasma turbulence in the laboratory. Nat. Commun. 10, 1758 (2019)

    ADS  Google Scholar 

  • A.P. Whitworth, D. Stamatellos, The minimum mass for star formation, and the origin of binary brown dwarfs. Astron. Astrophys. 458(3), 817–829 (2006)

    ADS  MATH  Google Scholar 

  • A. Whitworth, D. Summers, Self-similar condensation of spherically symmetric self-gravitating isothermal gas clouds. Mon. Not. R. Astron. Soc. 214, 1–25 (1985)

    ADS  MATH  Google Scholar 

  • A. Whitworth, M.R. Bate, Å. Nordlund et al., The formation of brown dwarfs: theory, in Protostars and Planets V, ed. by B. Reipurth, D. Jewitt, K. Keil (2007), p. 459

    Google Scholar 

  • N. Wiener, Generalized harmonic analysis. Acta Math. 55, 117–258 (1930). https://doi.org/10.1007/BF02546511

    Article  MathSciNet  MATH  Google Scholar 

  • J. Wiener, E.G. Zweibel, S.P. Oh, Cosmic ray heating of the warm ionized medium. Astrophys. J. 767, 87 (2013)

    ADS  Google Scholar 

  • R.P.C. Wiersma, J. Schaye, B.D. Smith, The effect of photoionization on the cooling rates of enriched, astrophysical plasmas. Mon. Not. R. Astron. Soc. 393(1), 99–107 (2009)

    ADS  Google Scholar 

  • M.G. Wolfire, D. Hollenbach, C.F. McKee et al., The neutral atomic phases of the interstellar medium. Astrophys. J. 443, 152 (1995)

    ADS  Google Scholar 

  • M.G. Wolfire, C.F. McKee, D. Hollenbach et al., Neutral atomic phases of the interstellar medium in the galaxy. Astrophys. J. 587, 278–311 (2003)

    ADS  Google Scholar 

  • J. Wurster, Z.Y. Li, The role of magnetic fields in the formation of protostellar discs. Front. Astron. Space Sci. 5, 39 (2018)

    ADS  Google Scholar 

  • A.M. Yaglom, The field of acceleration in turbulent flow. Dokl. Akad. Nauk SSSR 67(5), 795–798 (1949)

    MATH  Google Scholar 

  • P.K. Yeung, Advancing understanding of turbulence through extreme-scale computation, in APS Division of Fluid Dynamics Meeting Abstracts, APS Meeting Abstracts (2019). p. E01.001

    Google Scholar 

  • P.K. Yeung, X.M. Zhai, K.R. Sreenivasan, Extreme events in computational turbulence. Proc. Natl. Acad. Sci. USA 112(41), 12633–12638 (2015). https://www.jstor.org/stable/26465472

    ADS  Google Scholar 

  • H.W. Yorke, C. Sonnhalter, On the formation of massive stars. Astrophys. J. 569(2), 846–862 (2002)

    ADS  Google Scholar 

  • Q. Zhang, T.R. Hunter, J. Brand et al., Search for CO outflows toward a sample of 69 high-mass protostellar candidates. II. Outflow properties. Astrophys. J. 625(2), 864–882 (2005)

    ADS  Google Scholar 

  • Y. Zhang, H.G. Arce, D. Mardones et al., ALMA cycle 1 observations of the HH46/47 molecular outflow: structure, entrainment, and core impact. Astrophys. J. 832(2), 158 (2016)

    ADS  Google Scholar 

  • Y. Zhang, H.G. Arce, D. Mardones et al., An episodic wide-angle outflow in HH 46/47, arXiv e-prints (2019). arXiv:1908.00689

  • D. Zhao, H. Aluie, Inviscid criterion for decomposing scales. Phys. Rev. Fluids 3(5), 054603 (2018)

    ADS  Google Scholar 

  • J. Zrake, A.I. MacFadyen, Numerical simulations of driven relativistic magnetohydrodynamic turbulence. Astrophys. J. 744(1), 32 (2012)

    ADS  Google Scholar 

  • E.G. Zweibel, The microphysics and macrophysics of cosmic rays. Phys. Plasmas 20(5), 055501 (2013)

    ADS  MathSciNet  Google Scholar 

  • E.G. Zweibel, The basis for cosmic ray feedback: written on the wind. Phys. Plasmas 24(5), 055402 (2017)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the staff of the International Space Science Institute (ISSI) for their generous hospitality and for creating a stimulating collaborative environment. P.G. acknowledges funding from the European Research Council under ERC-CoG grant CRAGSMAN-646955. S.S.R.O. acknowledges funding from NSF Career grant AST-1650486. J.M.D.K. gratefully acknowledges funding from the German Research Foundation (DFG) in the form of an Emmy Noether Research Group (grant number KR4801/1-1) and a DFG Sachbeihilfe Grant (grant number KR4801/2-1), from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme via the ERC Starting Grant MUSTANG (grant agreement number 714907), and from Sonderforschungsbereich SFB 881 “The Milky Way System” (subproject B2) of the DFG. R.S.K. acknowledges support from the Deutsche Forschungsgemeinschaft via the SFB 881 “The Milky Way System” (subprojects B1, B2, and B8) as well as funding from the Heidelberg Cluster of Excellence STRUCTURES in the framework of Germany’s Excellence Strategy (grant EXC-2181/1 - 390900948). A.G.K. acknowledges support from the NASA ATP Grant No. 80NSSC18K0561 and NASA TCAN Grant No. NNH17ZDA001N. M.P. acknowledges funding from the INAF PRIN-SKA 2017 program 1.05.01.88.04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Girichidis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Star Formation

Edited by Andrei Bykov, Corinne Charbonnel, Patrick Hennebelle, Alexandre Marcowith, Georges Meynet, Maurizio Falanga and Rudolf von Steiger

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girichidis, P., Offner, S.S.R., Kritsuk, A.G. et al. Physical Processes in Star Formation. Space Sci Rev 216, 68 (2020). https://doi.org/10.1007/s11214-020-00693-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00693-8

Keywords

Navigation