Skip to main content
Log in

Parametric Method of Moments for Solving the Smoluchowski Coagulation Equation in the Theory of Accumulation of Dust Bodies in a Protoplanetary Disk

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

In relation to the problem of accumulation of dust particles, which are the main structure-forming element of planetesimals in a protoplanetary cloud, we propose a parametric method of moments for solving the Smoluchowski integro-differential equation that describes dispersed coagulation of disk matter. We consider a parametric approach to finding the size distribution function of protoplanetary bodies based on the Pearson diagram, with the aid of which the corresponding distributions are quite satisfactorily found by their first four moments. This approach is especially effective when it is necessary to know only the general properties of the volume distribution functions of coagulating bodies and their temporal evolution. Since the kinetics of the processes of aggregation of protoplanetary bodies substantially depends on the specific type of coagulation kernels, a fairly general method for their approximation is proposed in the study, which allows one to obtain simplified expressions. As a practical application, the parametric method of moments is demonstrated by a number of examples of the growth of protoplanetary bodies. The results provide a new productive approach to solving the key problem of stellar-planetary cosmogony associated with an explanation of the process of growth of interstellar dust particles to large planetesimals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Note that series (17) may even be divergent, moments of a higher order may not exist at all, and approximation by the first several terms may turn out to be better than when the series converges (see Levin, 1974).

REFERENCES

  1. Barrett, J.C. and Jheeta, J.S., Improving the accuracy of the moments method for solving the Aerosol General Dynamic Equation, J. Aerosol Sci., 1996, vol. 27, pp. 1135–1142.

    Article  ADS  Google Scholar 

  2. Barrett, J.C. and Webb, N.A., A comparison of some approximate methods for solving the aerosol general dynamic equation, J. Aerosol Sci., 1998, vol. 29, pp. 31–39.

    Article  ADS  Google Scholar 

  3. Blum, J., Grain growth and coagulation, Proc. Conf. “Astrophysics of Dust,” ASP Conference Series vol. 309, Witt, A.N., Clayton, G.C., and Draine, B.T., Eds., San Francisco: Astron. Soc. Pac., 2004, pp. 369–391.

  4. Bol’shev, L.N. and Smirnov, N.V., Tablitsy matematicheskoi statistiki (Tables of Mathematical Statistics), Moscow: Nauka, 1983.

  5. Chan, T.L., Lin, J.Z., Zhou, K., and Chan, C.K., Simultaneous numerical simulation of nano and fine particle coagulation and dispersion in a round jet, J. Aerosol Sci., 2006, vol. 37, pp. 1545–1561.

    Article  ADS  Google Scholar 

  6. Cramer, H., Mathematical Methods of Statistics, Uppsala: Almqvist & Wiksells, 1945.

    MATH  Google Scholar 

  7. Demidovich, B.P. and Maron, I.A., Osnovy vychislitel’noi matematiki (Fundamentals of Computational Mathematics), Moscow: Fizmatgiz, 1963.

  8. Dubrulle, B., Morfill, G., and Sterzik, M., The dust subdisk in the protoplanetary nebula, Icarus, 1995, vol. 114, pp. 237–246.

    Article  ADS  Google Scholar 

  9. Elderton, W.P., Frequency Curves and Correlation, Cambridge: Cambridge Univ. Press, 1953.

    MATH  Google Scholar 

  10. Frenklach, M., Method of moments with interpolative closure, Chem. Eng. Sci., 2002, vol. 57, pp. 2229–2239.

    Article  Google Scholar 

  11. Frenklach, M. and Harris, S.J., Aerosol dynamics modeling using the method of moments, J. Colloid Interface Sci., 1987, vol. 118, pp. 252–261.

    Article  ADS  Google Scholar 

  12. Goldreich, P. and Ward, W.R., The formation of planetesimals, Astrophys. J., 1973, vol. 183, no. 3, pp. 1051–1061.

    Article  ADS  Google Scholar 

  13. Hahn, G.J. and Shapiro, S.S., Statistical Models in Engineering, New York: Wiley, 1967.

    MATH  Google Scholar 

  14. Kendall, M.G. and Stuart, A., The Advanced Theory of Statistics, Vol. 1: Distribution Theory, London: Charles Griffin, 1963.

    MATH  Google Scholar 

  15. Kolesnichenko, A.V., Modeling the mass transfer and coagulation in a preplanetary gas-dust cloud, Preprint of Keldysh Inst. of Applied Mathematics, Russ. Acad. Sci., Moscow, 2000, no. 41.

  16. Kolesnichenko, A.V., Hydrodynamic aspects of modeling of the mass transfer and coagulation processes in turbulent accretion disks, Sol. Syst. Res., 2001, vol. 35, no. 2, pp. 125–140.

    Article  ADS  Google Scholar 

  17. Kolesnichenko, A.V., Synergetic mechanism of the development of coherent structures in the continual theory of developed turbulence, Sol. Syst. Res., 2004, vol. 38, no. 5, pp. 351–371.

    Article  ADS  Google Scholar 

  18. Kolesnichenko, A.V., The role of noise-induced nonequilibrium phase transitions in the structurization of hydrodynamic turbulence, Sol. Syst. Res., 2005, vol. 39, no. 3, pp. 214–230.

    Article  ADS  Google Scholar 

  19. Kolesnichenko, A.V. and Marov, M.Ya., Fundamentals of the mechanics of heterogeneous media in the circumsolar protoplanetary cloud: The effects of solid particles on disk turbulence, Sol. Syst. Res., 2006, vol. 40, no. 1, pp. 1–56.

    Article  ADS  Google Scholar 

  20. Kolesnichenko, A.V. and Marov, M.Ya., Modeling the formation of dust fractal clusters as the basis for loose protoplanethesimals in the solar preplanetary cloud, Preprint of Keldysh Inst. of Applied Mathematics, Russ. Acad. Sci., Moscow, 2014a, no. 75.

  21. Kolesnichenko, A.V. and Marov, M.Ya., Turbulentnost’ i samoorganizatsiya. Problemy modelirovaniya kosmicheskikh i prirodnykh sred (Turbulence and Self-Organization: Modeling of Space and Natural Media), Moscow: BINOM. Laboratoriya Znanii, 2014b.

  22. Lee, K.W., Change of particle size distribution during Brownian coagulation, J. Colloid Interface Sci., 1983, vol. 92, no. 2, pp. 315–325.

    Article  ADS  Google Scholar 

  23. Levin, B.R., Teoreticheskie osnovy stiatisticheskoi radiotekhniki (Theory of Statistical Radio Engineering), Moscow: Sovetskoe Radio, 1974.

  24. Logunov, V.I., Obezvozhivanie i obessolivanie neftei (Dehydration and Desalting of Oils), Moscow: Khimiya, 1979.

  25. Marchisio, D.L. and Fox, R.O., Solution of population balance equations using the direct quadrature method of moments, J. Aerosol Sci., 2005, vol. 36, pp. 43–73.

    Article  ADS  Google Scholar 

  26. Marov, M.Ya. and Kolesnichenko, A.V., Mechanics of Turbulence of Multicomponent Gases, Amsterdam: Kluwer, 2001.

    Book  Google Scholar 

  27. Marov, M.Ya. and Kolesnichenko, A.V., Turbulence and Self-Organization: Modeling Astrophysical Objects, New York: Springer-Verlag, 2013.

    Book  Google Scholar 

  28. McGraw, R., Description of aerosol dynamics by the quadrature method of moments, Aerosol Sci. Technol., 1997, vol. 27, pp. 255–265.

    Article  ADS  Google Scholar 

  29. Nakagawa, Y., Nakazawa, K., and Hayashi, C., Growth and sedimentation of dust grains in the primordial solar nebula, Icarus, 1981, vol. 45, pp. 517–528.

    Article  ADS  Google Scholar 

  30. Nakagawa, Y., Hayashi, C., and Nakazawa, K., Accumulation of planetesimals in the solar nebula, Icarus, 1983, vol. 54, pp. 361–376.

    Article  ADS  Google Scholar 

  31. Nakagawa, Y., Sekiya, M., and Hayashi, C., Settling and growth of dust particles in a laminar phase of a low-mass solar nebula, Icarus, 1986, vol. 67, pp. 375–390.

    Article  ADS  Google Scholar 

  32. Nakamoto, T. and Nakagawa, Y., Formation, early evolution, and gravitational stability of protoplanetary disks, Astrophys. J., 1994, vol. 421, pp. 640–651.

    Article  ADS  Google Scholar 

  33. Okuzumi, S., Tanaka, H., Takeuchu, T., and Sakagami, M.-A., Electrostatic barrier against dust growth in protoplanetary disks. 1. Classifying the evolution of size distribution, Astrophys. J., 2011, vol. 731, pp. 95–115.

    Article  ADS  Google Scholar 

  34. Ormel, C.W., Spaans, M., and Tielens, A.G.G.M., Dust coagulation in protoplanetary disks: porosity matters, Astron. Astrophys., 2007, vol. 461, pp. 215–236.

    Article  ADS  Google Scholar 

  35. Pearson, E.S. and Hartley, H.O., Biometrika Tables for Statisticians, Cambridge: Cambridge Univ. Press, 1954, vol. 1. Popel’, A.S., Regirer, S.A., and Shadrina, N.Kh., Kinetic equations of aggregation processes in suspensions, Prikl. Matem. Mekh., 1975, vol. 39, no. 1, pp. 131–143.

  36. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical Recipes in Fortran, Cambridge: Cambridge Univ. Press, 1992, 2nd ed.

    MATH  Google Scholar 

  37. Safronov, V.S., Gravitational instability in plane rotating systems with axial symmetry, Dokl. Akad. Nauk SSSR, 1960, vol. 130, no. 1, pp. 53–56.

    Google Scholar 

  38. Safronov, V.S., Evolyutsiya doplanetarnogo oblaka i obrazovanie Zemli i planet (The Evolution of the Pre-Planetary Cloud and the Formation of the Earth and Planets), Moscow: Nauka, 1969.

  39. Sinaiskii, E.G., Gidrodinamika fiziko-khimicheskikh protsessov (Hydrodynamics of Physical-Chemical Processes), Moscow: Nedra, 1997.

  40. Smoluchowski, M.V., Experiments on a mathematical theory of kinetic coagulation of colloid solutions, Z. Phys. Chem., Stoechiom.Verwandtschaftsl., 1917, vol. 92, pp. 129–68.

    Google Scholar 

  41. Suyama, T., Wada, K., and Tanaka, H., Numerical simulation of density evolution of dust aggregates in protoplanetary disks. I. Head-on collisions, Astrophys. J., 2008, vol. 684, pp. 1310–1322.

    Article  ADS  Google Scholar 

  42. Suyama, T., Wada, K., Tanaka, H., and Okuzumi, S., Geometrical cross sections of dust aggregates and a compression model for aggregate collisions, Astrophys. J., 2012, vol. 753, no. 2.

    Article  ADS  Google Scholar 

  43. Tarasov, V.E. Fractional hydrodynamic equations for fractal media, Ann. Phys., 2005, vol. 318, no. 2, pp. 286–307.

    Article  ADS  MathSciNet  Google Scholar 

  44. Tarasov, V.E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, New York: Springer-Verlag, 2010.

    Book  Google Scholar 

  45. Voloshchuk, V.M., Kineticheskaya teoriya koagulyatsii (Kinetic Theory of Coagulation), Moscow: Gidrometeoizdat, 1984.

  46. Voloshchuk, V.M. and Sedunov, Yu., Protsessy koagulyatsii v dispersnykh sredakh (Coagulation Processes in Dispersed Media), Moscow: Gidrometeoizdat, 1975.

  47. Wada, K., Tanaka, H., Suyama, T., Kimura, H., and Yamamoto, T., Simulation of dust aggregate collisions. II. Compression and disruption of three-dimensional aggregates in head-on collisions, Astrophys. J., 2008, vol. 677, pp. 1296–1308.

    Article  ADS  Google Scholar 

  48. Weidenschilling, S.J., Dust to planetesimals: settling and coagulation in the solar nebula, Icarus, 1980, vol. 44, pp. 172–189.

    Article  ADS  Google Scholar 

  49. Youdin, A.N. and Shu, F., Planetesimal formation by gravitational instability, Astrophys. J., 2002, vol. 580, pp. 494–505.

    Article  ADS  Google Scholar 

  50. Yu, M.Z., Lin, J.Z., and Chan, T.L., A new moment method for solving the coagulation equation for particles in Brownian motion, Aerosol Sci. Technol., 2008a, vol. 42, pp. 705–713.

    Article  ADS  Google Scholar 

  51. Yu, M., Lin, J., and Tatleung, C.A., New moment method for solving the coagulation equation for particles in Brownian motion, Aerosol Sci. Technol., 2008b, vol. 42, pp. 705–713.

    Article  ADS  Google Scholar 

  52. Yu, M.Z., Lin, J., Jin H., and Jiang, Y., The verification of the Taylor-expansion moment method for the nanoparticle coagulation in the entire size regime due to Brownian motion, J. Nanopart. Res., 2011, vol. 13, pp. 2007–2020.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kolesnichenko.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnichenko, A.V. Parametric Method of Moments for Solving the Smoluchowski Coagulation Equation in the Theory of Accumulation of Dust Bodies in a Protoplanetary Disk. Sol Syst Res 54, 187–202 (2020). https://doi.org/10.1134/S0038094620030065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094620030065

Keywords:

Navigation