Skip to main content
Log in

Novel (Ni, Fe)S2/(Ni, Fe)3S4 solid solution hybrid: an efficient electrocatalyst with robust oxygen-evolving performance

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Fabrication of high-activity electrocatalysts with operational stability is desperately needed to achieve efficient energy conversion. Herein, for the first time, we highlight a novel electrocatalyst based on binary nickel iron sulfide solid solution hybrids on carbon cloth for oxygen evolution reaction. Benefitting from the synergistic effect of varied phases and the interfacial connection between (Ni, Fe)S2 and (Ni, Fe)3S4 to accelerate the charge transport, the Ni incorporation to optimize the electronic structure of the hybrids and the downshift of the d-band center to facilitate the desorption of oxygen intermediates, the partial charge-transfer between Fe and Ni to boost the generation of catalytically active Ni3+ as well as the unique nanosphere structure to offer enough buffer area for the volume changes during constant redox reactions, the obtained binary nickel iron sulfide hybrids ((Ni, Fe)S2/(Ni, Fe)3S4) display high catalytic reactivity with a low overpotential of 210 mV to reach the current density of 10 mA cm−2, and excellent stability with negligible activity deterioration, making the hybrid a promising candidate for electrocatalytic alkaline water oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang Y, Xia X, Cao X, Zhang B, Tiep NH, He H, Chen S, Huang Y, Fan HJ. Adv Energy Mater, 2017, 7: 1700220

    Google Scholar 

  2. Yan Y, Xia BY, Zhao B, Wang X. J Mater Chem A, 2016, 4: 17587–17603

    CAS  Google Scholar 

  3. Xie J, Gao L, Cao S, Liu W, Lei F, Hao P, Xia X, Tang B. J Mater Chem A, 2019, 7: 13577–13584

    CAS  Google Scholar 

  4. Zhang Y, Jia G, Wang H, Ouyang B, Rawat RS, Fan HJ. Mater Chem Front, 2017, 1: 709–715

    CAS  Google Scholar 

  5. Zhou P, He J, Zou Y, Wang Y, Xie C, Chen R, Zang S, Wang S. Sci China Chem, 2019, 62: 1365–1370

    CAS  Google Scholar 

  6. Zhang H, Jiang H, Hu Y, Li Y, Xu Q, Petr S, Li C. J Mater Chem A, 2019, 7: 7548–7552

    CAS  Google Scholar 

  7. Anantharaj S, Ede SR, Sakthikumar K, Karthick K, Mishra S, Kundu S. ACS Catal, 2016, 6: 8069–8097

    CAS  Google Scholar 

  8. Zhao X, Pachfule P, Li S, Simke JRJ, Schmidt J, Thomas A. Angew Chem Int Ed, 2018, 57: 8921–8926

    CAS  Google Scholar 

  9. Ji L, Wang J, Teng X, Meyer TJ, Chen Z. ACS Catal, 2020, 10: 412–419

    CAS  Google Scholar 

  10. Zhang Y, Ouyang B, Xu J, Jia G, Chen S, Rawat RS, Fan HJ. Angew Chem Int Ed, 2016, 55: 8670–8674

    CAS  Google Scholar 

  11. Zheng X, Han X, Zhang Y, Wang J, Zhong C, Deng Y, Hu W. Nanoscale, 2019, 11: 5646–5654

    PubMed  CAS  Google Scholar 

  12. Chen P, Zhang N, Wang S, Zhou T, Tong Y, Ao C, Yan W, Zhang L, Chu W, Wu C, Xie Y. Proc Natl Acad Sci USA, 2019, 116: 6635–6640

    PubMed  CAS  Google Scholar 

  13. Hao P, Zhu W, Li L, Tian J, Xie J, Lei F, Cui G, Zhang Y, Tang B. Electrochim Acta, 2020, 338: 135883

    CAS  Google Scholar 

  14. Xiong Q, Wang Y, Liu PF, Zheng LR, Wang G, Yang HG, Wong PK, Zhang H, Zhao H. Adv Mater, 2018, 30: 1801450

    Google Scholar 

  15. Zeng L, Sun K, Yang Z, Xie S, Chen Y, Liu Z, Liu Y, Zhao J, Liu Y, Liu C. J Mater Chem A, 2018, 6: 4485–4493

    CAS  Google Scholar 

  16. Li Y, Yin J, An L, Lu M, Sun K, Zhao YQ, Gao D, Cheng F, Xi P. Small, 2018, 14: 1801070

    Google Scholar 

  17. Trotochaud L, Young SL, Ranney JK, Boettcher SW. J Am Chem Soc, 2014, 136: 6744–6753

    PubMed  CAS  Google Scholar 

  18. Sultana S, Mansingh S, Parida KM. J Mater Chem A, 2019, 7: 9145–9153

    CAS  Google Scholar 

  19. Gao Y, Wang K, Song H, Wu H, Yan S, Xu X, Shi Y. Catalysts, 2019, 9: 556

    CAS  Google Scholar 

  20. Hao P, Zhu W, Lei F, Ma X, Xie J, Tan H, Li L, Liu H, Tang B. Nanoscale, 2018, 10: 20384–20392

    PubMed  CAS  Google Scholar 

  21. Hao P, Zhu W, Li L, Xin Y, Xie J, Lei F, Tian J, Tang B. Chem Commun, 2019, 55: 10138–10141

    CAS  Google Scholar 

  22. Xie J, Qu H, Lei F, Peng X, Liu W, Gao L, Hao P, Cui G, Tang B. J Mater Chem A, 2018, 6: 16121–16129

    CAS  Google Scholar 

  23. Miao R, Dutta B, Sahoo S, He J, Zhong W, Cetegen SA, Jiang T, Alpay SP, Suib SL. J Am Chem Soc, 2017, 139: 13604–13607

    PubMed  CAS  Google Scholar 

  24. Hao P, Tian J, Sang Y, Tuan CC, Cui G, Shi X, Wong CP, Tang B, Liu H. Nanoscale, 2016, 8: 16292–16301

    PubMed  CAS  Google Scholar 

  25. Huang DD, Li S, Wu YP, Wei JH, Yi JW, Ma HM, Zhang QC, Liu YL, Li DS. Chem Commun, 2019, 55: 4570–4573

    CAS  Google Scholar 

  26. Liu C, Ma H, Yuan M, Yu Z, Li J, Shi K, Liang Z, Yang Y, Zhu T, Sun G, Li H, Ma S. Electrochim Acta, 2018, 286: 195–204

    CAS  Google Scholar 

  27. Huang L, Wu H, Liu H, Zhang Y. Electrochim Acta, 2019, 318: 892–900

    CAS  Google Scholar 

  28. Yang L, Gao M, Dai B, Guo X, Liu Z, Peng B. Electrochim Acta, 2016, 191: 813–820

    CAS  Google Scholar 

  29. Shen Y, Wang L, Jiang P, Lee WSV, Xue J. ChemElectroChem, 2019, 6: 2741–2747

    CAS  Google Scholar 

  30. Hao Z, Wei P, Kang H, Yang Y, Li J, Chen X, Guo D, Liu L. J Electroanal Chem, 2019, 850: 113436

    CAS  Google Scholar 

  31. Luan X, Du H, Kong Y, Qu F, Lu L. Chem Commun, 2019, 55: 7335–7338

    CAS  Google Scholar 

  32. Jin J, Yin J, Liu H, Xi P. Chin J Catal, 2019, 40: 43–51

    CAS  Google Scholar 

  33. Wang B, Tang C, Wang HF, Chen X, Cao R, Zhang Q. Adv Mater, 2019, 31: 1805658

    Google Scholar 

  34. Zhang S, Sun Y, Liao F, Shen Y, Shi H, Shao M. Electrochim Acta, 2018, 283: 1695–1701

    CAS  Google Scholar 

  35. Wang B, Hu Y, Yu B, Zhang X, Yang D, Chen Y. J Power Sources, 2019, 433: 126688

    CAS  Google Scholar 

  36. Wang K, Guo W, Yan S, Song H, Shi Y. RSC Adv, 2018, 8: 28684–28691

    CAS  Google Scholar 

  37. Yin J, Li Y, Lv F, Lu M, Sun K, Wang W, Wang L, Cheng F, Li Y, Xi P, Guo S. Adv Mater, 2017, 29: 1704681

    Google Scholar 

  38. Liu Z, Tan H, Xin J, Duan J, Su X, Hao P, Xie J, Zhan J, Zhang J, Wang JJ, Liu H. ACS Appl Mater Interfaces, 2018, 10: 3699–3706

    PubMed  CAS  Google Scholar 

  39. Xie J, Cao S, Gao L, Lei F, Hao P, Tang B. Chem Commun, 2019, 55: 9841–9844

    CAS  Google Scholar 

  40. Mahala C, Sharma MD, Basu M. Electrochim Acta, 2018, 273: 462–473

    CAS  Google Scholar 

  41. Xie J, Liu W, Lei F, Zhang X, Qu H, Gao L, Hao P, Tang B, Xie Y. Chem Eur J, 2018, 24: 18408–18412

    PubMed  CAS  Google Scholar 

  42. Han X, Niu Y, Yu C, Liu Z, Huang H, Huang H, Li S, Guo W, Tan X, Qiu J. Nano Energy, 2019, 69: 104367

    Google Scholar 

  43. Han X, Zhang W, Ma X, Zhong C, Zhao N, Hu W, Deng Y. Adv Mater, 2019, 31: 1808281

    Google Scholar 

  44. Wang X, Sunarso J, Lu Q, Zhou Z, Dai J, Guan D, Zhou W, Shao Z. Adv Energy Mater, 2020, 10: 1903271

    CAS  Google Scholar 

  45. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM. Chem Soc Rev, 2017, 46: 337–365

    PubMed  CAS  Google Scholar 

  46. Surendranath Y, Kanan MW, Nocera DG. J Am Chem Soc, 2010, 132: 16501–16509

    PubMed  CAS  Google Scholar 

  47. Hao P, Ma X, Xie J, Lei F, Li L, Zhu W, Cheng X, Cui G, Tang B. Sci China Chem, 2018, 61: 797–805

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21535004, 51602182, 91753111, 51372142, 21390411) and Shandong Provincial Natural Science Foundation, China (ZR2016EMQ02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pin Hao, Hong Liu or Bo Tang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Electronic Supporting Information

11426_2020_9770_MOESM1_ESM.pdf

Novel (Ni, Fe)S2/(Ni, Fe)3S4 solid solution hybrids: an efficient electrocatalyst with robust oxygen-evolving performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, P., Xin, Y., Tian, J. et al. Novel (Ni, Fe)S2/(Ni, Fe)3S4 solid solution hybrid: an efficient electrocatalyst with robust oxygen-evolving performance. Sci. China Chem. 63, 1030–1039 (2020). https://doi.org/10.1007/s11426-020-9770-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9770-5

Keywords

Navigation