Skip to main content

Advertisement

Log in

Bridge effect on the charge transfer and optoelectronic properties of triphenylamine-based organic dye sensitized solar cells: theoretical approach

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this work, a series of six organic dyes-sensitized solar cells (DSSCs) combining various π-bridges with a fixed donor (triphenylamine) and a fixed electron acceptor (cyanoacrylic acid), namely D1-6, were studied. The geometrical structure, electronic and optical properties of these dyes have been investigated with the density functional theory and TD-BHandHLYP hybrid functional (time-dependent Becke-Half-and-Half-Lee–Yang–Parr’s) methods. The effects of π-bridging of the dyes have shown that the rings with a sulfur atom reduce the energy gaps and provide a redshift of the absorption spectra. Similarly, we focus on the description of the ground and excited state properties. On the other hand, the pyrrole group improves the open-circuit voltage (VOC) and the light-harvesting efficiency parameters leading to greater power conversion efficiency. Furthermore, the results revealed lowest total reorganization energy λ (λ+ and λ) for the dye D3 with pyrrole linkage, which reflects its most favorable charge-transport properties, implying a lower charge recombination rate, faster charge injection and dye regeneration processes. Therefore, this study would provide a new path to design novel conjugated organic molecules as dyes for high-performance DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Google Scholar 

  2. J.-X. Cheng, Z.-S. Huang, L. Wang, D. Cao, Dyes Pigm. 131, 134 (2016)

    CAS  Google Scholar 

  3. Y. Wu, W. Zhu, Chem. Soc. Rev. 42, 2039 (2013)

    PubMed  Google Scholar 

  4. X. Liu, Y. Luo, H. Li, Y. Fan, Z. Yu, Y. Lin, L. Chen, Q. Meng, Chem. Commun 0, 2847 (2007)

    CAS  Google Scholar 

  5. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Chem. Rev. 115, 2136 (2015)

    CAS  PubMed  Google Scholar 

  6. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, Y. Wei, Chem. Soc. Rev. 46, 5975 (2017)

    CAS  PubMed  Google Scholar 

  7. A. Mahmood, Sol. Energy 123, 127 (2016)

    CAS  Google Scholar 

  8. A. Carella, F. Borbone, R. Centore, Front. Chem. 6, 481 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Liang, W. Xu, F. Cai, P. Chen, B. Peng, J. Chen, Z. Li, J. Phys. Chem. C 111, 4465 (2007)

    CAS  Google Scholar 

  10. R. Li, X. Lv, D. Shi, D. Zhou, Y. Cheng, G. Zhang, P. Wang, J. Phys. Chem. C 113, 7469 (2009)

    CAS  Google Scholar 

  11. N.P. Liyanage, A. Yella, M. Nazeeruddin, M. Grätzel, J.H. Delcamp, A.C.S. Appl, Mater. Interfaces 8, 5376 (2016)

    CAS  Google Scholar 

  12. S. Ennehary, H. Toufik, S. M. Bouzzine, and F. Lamchouri, J. Comput. Electron. (2020).

  13. Y.K. Eom, J.Y. Hong, J. Kim, H.K. Kim, Dyes Pigm. 136, 496 (2017)

    CAS  Google Scholar 

  14. A. Irfan, A.G. Al-Sehemi, S. Muhammad, M.S. Al-Assiri, A.R. Chaudhry, A. Kalam, M. Shkir, J. King Saud Univ. Sci. 27, 361 (2015)

    Google Scholar 

  15. L.L. Estrella, S.H. Lee, D.H. Kim, Dyes Pigm. 165, 1 (2019)

    CAS  Google Scholar 

  16. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    CAS  Google Scholar 

  17. R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72, 650 (1980)

    CAS  Google Scholar 

  18. Z.M.E. Fahim, S.M. Bouzzine, A.A. Youssef, M. Bouachrine, M. Hamidi, Comput. Theoret. Chem. 1125, 39 (2018)

    CAS  Google Scholar 

  19. V. Barone, M. Cossi, J. Phys. Chem. A 102, 1995 (1998)

    CAS  Google Scholar 

  20. T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393, 51 (2004)

    CAS  Google Scholar 

  21. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    CAS  PubMed  Google Scholar 

  22. A. Üngördü, Chem. Phys. Lett. 733, 136696 (2019)

    Google Scholar 

  23. M.P. Balanay, D.H. Kim, J. Mol. Struct. (Thoechem) 910, 20 (2009)

    CAS  Google Scholar 

  24. W.-L. Ding, D.-M. Wang, Z.-Y. Geng, X.-L. Zhao, W.-B. Xu, Dyes Pigm. 98, 125 (2013)

    CAS  Google Scholar 

  25. Gaussian 09, R.A.: 1, mj frisch, gw trucks, hb schlegel, ge scuseria, ma robb, jr cheeseman, g. Scalmani, v. Barone, b. Mennucci, ga petersson et al., gaussian. Inc Wallingford CT. 121, 150 (2009).

  26. A. Aicha Youssef, S. Mohamed Bouzzine, Z. Mohyi Eddine Fahim, İ. Sıdır, M. Hamidi, M. Bouachrine, Phys. B Condensed Matter 560, 111 (2019)

    CAS  Google Scholar 

  27. H. Toufik, S. M. Bouzzine, O. Ninis, M. Aberkane, F. Lamchouri, M. Hamidi, and M. Bouachrine, Жypнaл Фiзичниx Дocлiджeнь 1702 (2012).

  28. H. Toufik, S.M. Bouzzine, O. Ninis, F. Lamchouri, M. Aberkane, M. Hamidi, M. Bouachrine, Res. Chem. Intermed. 38, 1375 (2012)

    CAS  Google Scholar 

  29. M. Lazrak, H. Toufik, S.M. Bouzzine, H. Bih, F. Lamchouri, IOP Conf. Ser. Earth Environ. Sci. 161, 012021 (2018)

    Google Scholar 

  30. M. Lazrak, H. Toufik, S. M. Bouzzine, H. Bih, and F. Lamchouri, 10 (n.d.).

  31. J.H. Bae, S.J. Lim, J. Choi, S.B. Yuk, J.W. Namgoong, J.H. Ko, W. Lee, J.P. Kim, Dyes Pigm. 162, 905 (2019)

    CAS  Google Scholar 

  32. C. Figueira, P. Lopes, C. Gomes, L. F. Veiros, P. Gomes, Exploring the influence of steric hindrance and electronic nature of substituents in the supramolecular arrangements of 5-(Substituted Phenyl)-2-Formylpyrroles (2015).

  33. Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden and S. Khromov, Doping Effects on the Structural and Optical Properties of GaN (Linköping University Electronic Press, Linköping, 2013).

  34. J.B. Asbury, Y.-Q. Wang, E. Hao, H.N. Ghosh, T. Lian, Res Chem Intermediat 27, 393 (2001)

    CAS  Google Scholar 

  35. A. Hagfeldt, M. Graetzel, Chem. Rev. 95, 49 (1995)

    CAS  Google Scholar 

  36. L.L. Estrella, M.P. Balanay, D.H. Kim, J. Phys. Chem. A 120, 5917 (2016)

    CAS  PubMed  Google Scholar 

  37. J.C. Delgado, Y. Ishikawa, R.G. Selsby, Photochem. Photobiol. 85, 1286 (2009)

    CAS  PubMed  Google Scholar 

  38. W.R. Duncan, O.V. Prezhdo, Annu. Rev. Phys. Chem. 58, 143 (2007)

    CAS  PubMed  Google Scholar 

  39. B.C. Lin, C.P. Cheng, Z.P.M. Lao, J. Phys. Chem. A 107, 5241 (2003)

    CAS  Google Scholar 

  40. G.R. Hutchison, M.A. Ratner, T.J. Marks, J. Am. Chem. Soc. 127, 2339 (2005)

    CAS  PubMed  Google Scholar 

  41. H. Li, L. Yang, R. Tang, Y. Hou, Y. Yang, H. Wang, H. Han, J. Qin, Q. Li, Z. Li, Dyes Pigm. 99, 863 (2013)

    CAS  Google Scholar 

  42. R. Manne, T. Åberg, Chem. Phys. Lett. 7, 282 (1970)

    CAS  Google Scholar 

  43. J. Preat, C. Michaux, D. Jacquemin, E.A. Perpète, J. Phys. Chem. C 113, 16821 (2009)

    CAS  Google Scholar 

  44. Z.M.E. Fahim, S.M. Bouzzine, Y. Ait Aicha, M. Bouachrine, M. Hamidi, Res. Chem. Intermed. 44, 2009 (2018)

    CAS  Google Scholar 

  45. K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, J. Phys. Chem. B 107, 597 (2003)

    CAS  Google Scholar 

  46. W. Sang-aroon, S. Laopha, P. Chaiamornnugool, S. Tontapha, S. Saekow, V. Amornkitbamrung, J Mol Model 19, 1407 (2013)

    CAS  PubMed  Google Scholar 

  47. A. SalimiBeni, M. Zarandi, B. Hosseinzadeh, A. NajafiChermahini, J. Mol. Struct. 1164, 155 (2018)

    CAS  Google Scholar 

  48. L.-Y. Lin, C.-H. Tsai, K.-T. Wong, T.-W. Huang, L. Hsieh, S.-H. Liu, H.-W. Lin, C.-C. Wu, S.-H. Chou, S.-H. Chen, A.-I. Tsai, J. Org. Chem. 75, 4778 (2010)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was realized with the support of the National Center for Scientific and Technical Research (CNRST—Morocco) as part of the Research Excellence Awards Program (No. 28USMBA2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Toufik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file (PDF 295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazrak, M., Toufik, H., Bouzzine, S.M. et al. Bridge effect on the charge transfer and optoelectronic properties of triphenylamine-based organic dye sensitized solar cells: theoretical approach. Res Chem Intermed 46, 3961–3978 (2020). https://doi.org/10.1007/s11164-020-04184-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04184-x

Keywords

Navigation