Skip to main content
Log in

Imaging Enhancement in Angle-Domain Common-Image-Gathers Using the Connected-Component Labeling Method

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The quality of seismic migration images strongly depends on accurate velocity models. However, migration velocity models often contain errors causing artifacts which degrade seismic resolution and fidelity. Here, we propose a method to enhance seismic migration images using processes in angle-domain common-image-gathers (ADCIGs), without requiring modification to the velocity model. The ADCIGs impacted from velocity errors show non-flat gathers and scattered noise. To enhance the imaging quality in ADCIGs, these problems need to be treated prior to stacking. Ideally, layers in ADCIGs should be flat without smearing amplitudes through all angles. Using this principle, we iteratively process one reflection at a time by isolating it into a local window and then flattening it. Also, we apply internal processing steps to enhance the signal. The algorithm for segregating a reflection, referred to as the connected-component labeling (CCL) method, is the primary method for extracting any feature that has a continuous form within the ADCIGs. Moreover, this method is insensitive to scattered noise so it is a suitable approach for classifying reflections or noise. To test the efficiency of this algorithm, we create ADCIGs containing relatively poor-quality images using an inaccurate migration velocity model. The primary objective of this test is to show how well the CCL method can select various forms of reflections in the presence of various levels of noise. The results show that the CCL method is capable of individually decomposing a reflection, which can facilitate processing in the internal workflow. Finally, we evaluate the quality of processed migration images by comparing our processed Poynting-vector reverse time migration (PVRTM) images with reverse time migration applied Laplacian filter and partial stacked PVRTM. These comparable migration images are benchmarked against a baseline synthetic reflector model. The essential improvements of our method are addressed by the migration sections, namely the removal of diffraction artifacts at both small and large scales and the improvement of phase coherency. The final stacked migration image produced with our methods shows clearer geological features that are capable of delivering a more reliable seismic interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Bao, P., Zhang, L., & Wu, X. L. (2005). Canny edge detection enhancement by scale multiplication. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9), 1485–1490.

    Article  Google Scholar 

  • Baysal, E., Kosloff, D. D., & Sherwood, J. W. C. (1983). Reverse time migration. Geophysics, 48(11), 1514–1524.

    Article  Google Scholar 

  • Biggs, N. L. (1976). Graph theory 1736–1936. In: N. L. Biggs, E. Keith Lloyd, R. J. Wilson (Eds). Oxford [Eng.], Clarendon Press.

  • Biondi, B., & Tisserant, T. (2004). 3D angle-domain common-image gathers for migration velocity analysis. Geophysical Prospecting, 52(6), 575–591.

    Article  Google Scholar 

  • Brandsberg-Dahl, S., de Hoop, M. V., & Ursin, B. (2003). Focusing in dip and AVA compensation on scattering-angle/azimuth common image gathers. Geophysics, 68(1), 232–254.

    Article  Google Scholar 

  • Burger, W., Burge, M. J., & Ian, M. (2009). Digital images. In I. Mackie (Ed.), Principles of digital image processing: Fundamental techniques. London: Springer-Verlag.

    Google Scholar 

  • Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis Machine Intelligence, 6, 679–698.

    Article  Google Scholar 

  • Claerbout, J. F. (1971). Toward a unified theory of reflector mapping. Geophysics, 36(3), 467–481.

    Article  Google Scholar 

  • Dafni, R., & Symes, W. W. (2017). Diffraction imaging by prestack reverse-time migration in the dip-angle domain. Geophysical Prospecting, 65, 295–316.

    Article  Google Scholar 

  • Davis, L. S. (1975). A survey of edge detection techniques. Computer Graphics Image Processing, 4(3), 248–270.

    Article  Google Scholar 

  • Dillencourt, M. B., Samet, H., & Tamminen, M. (1992). A general-approach to connected-component labeling for arbitrary image representations. Journal of the ACM, 39(2), 253–280.

    Article  Google Scholar 

  • Fiorio, C., & Gustedt, J. (1996). Two linear time union-find strategies for image processing. Theoretical Computer Science, 154(2), 165–181.

    Article  Google Scholar 

  • Gonzalez, R., Woods, R., & Eddins, C. (2006). Digital image processing in the Matlab environment. Moscow: Technosphere Publ.

    Google Scholar 

  • Haralick, R. M., & Shapiro, L. G. (1985). Image segmentation techniques. Computer Vision, Graphics, Image Processing, 29(1), 100–132.

    Article  Google Scholar 

  • He, L. F., Ren, X. W., Gao, Q. H., Zhao, X., Yao, B., & Chao, Y. Y. (2017). The connected-component labeling problem: A review of state-of-the-art algorithms. Pattern Recognition, 70, 25–43.

    Article  Google Scholar 

  • Henry, M., Orcutt, J. A., & Parker, R. L. (1980). A new method for slant stacking refraction data. Geophysical Research Letters, 7(12), 1073–1076.

    Article  Google Scholar 

  • Huang, Y., Wang, X., & Schuster, G. T. (2014). Non-local means filter for trim statics. In SEG technical program expanded abstracts 2014 (pp. 3925–3929). Society of Exploration Geophysicists.

  • Jähne, B. (2005). Digital image processing. Berlin: Springer.

    Google Scholar 

  • Jin, H., McMechan, G. A., & Nguyen, B. (2015). Improving input/output performance in 2D and 3D angle-domain common-image gathers from reverse time migration. Geophysics, 80(2), S65–S77.

    Article  Google Scholar 

  • Kosloff, D. D., & Baysal, E. (1983). Migration with the full acoustic-wave equation. Geophysics, 48(6), 677–687.

    Article  Google Scholar 

  • Lee, J., Haralick, R., & Shapiro, L. (1987). Morphologic edge detection. IEEE Journal on Robotics Automation, 3(2), 142–156.

    Article  Google Scholar 

  • Lee, L. K., Liew, S. C., & Thong, W. J. (2015). A review of image segmentation methodologies in medical image. In Advanced computer and communication engineering technology (pp. 1069–1080). Springer.

  • Liu, Q. C. (2019). Dip-angle image gather computation using the Poynting vector in elastic reverse time migration and their application for noise suppression. Geophysics, 84(3), S159–S169.

    Article  Google Scholar 

  • Ma, Y., Luo, Y., & Kelamis, P. (2019). Superresolution stacking based on sparse Radon transform. Geophysics, 84(1), V45–V54.

    Article  Google Scholar 

  • Martin, G. S., Wiley, R., & Marfurt, K. J. (2006). Marmousi2: An elastic upgrade for Marmousi. The Leading Edge, 25(2), 156–166.

    Article  Google Scholar 

  • Oliveira, R. B., Mercedes Filho, E., Ma, Z., Papa, J. P., Pereira, A. S., & Tavares, J. M. R. (2016). Computational methods for the image segmentation of pigmented skin lesions: A review. Computer Methods Programs in Biomedicine, 131, 127–141.

    Article  Google Scholar 

  • Ottolini, R., & Claerbout, J. F. (1984). The migration of common midpoint slant stacks. Geophysics, 49(3), 237–249.

    Article  Google Scholar 

  • Poynting, J. H. (1884). XV. On the transfer of energy in the electromagnetic field. In Philosophical transactions of the royal society of London (Vol. 175, pp. 343–361).

  • Prucha, M. L., Biondi, B. L., & Symes, W. W. (1999). Angle-domain common image gathers by wave-equation migration. In SEG technical program expanded abstracts 1999 (pp. 824–827). Society of Exploration Geophysicists.

  • Radon, J. (1917). Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte Sachsische Akademie der Wissenschaften, Leipzig, Math-Phys Kl., 69(69), 262–277.

    Google Scholar 

  • Reiss, T. H. (1993). Recognizing planar objects using invariant image features (Vol. 17). New York: Springer.

    Book  Google Scholar 

  • Rosenfel, A., & Pfaltz, J. L. (1966). Sequential operations in digital picture processing. Journal of the ACM, 13(4), 471–494.

    Article  Google Scholar 

  • Sava, P. C., & Fomel, S. (2003). Angle-domain common-image gathers by wavefield continuation methods. Geophysics, 68(3), 1065–1074.

    Article  Google Scholar 

  • Suzuki, K., Horiba, I., & Sugie, N. (2003). Linear-time connected-component labeling based on sequential local operations. Computer Vision and Image Understanding, 89(1), 1–23.

    Article  Google Scholar 

  • Tang, C., & McMechan, G. A. (2018). The dynamically correct Poynting vector formulation for acoustic media with application in calculating multidirectional propagation vectors to produce angle gathers from reverse time migration. Geophysics, 83(4), S365–S374.

    Article  Google Scholar 

  • Thongsang, P., Hu, H., Lau, A., & Zhou, H.-w. (2018). Imaging improvement in angle-domain common-image-gathers by a local stack utilizing segmentation method. In SEG technical program expanded abstracts 2018 (pp. 4221–4225). Society of Exploration Geophysicists.

  • Virieux, J. (1986). P-Sv-wave propagation in heterogeneous media—velocity-stress finite-difference method. Geophysics, 51(4), 889–901.

    Article  Google Scholar 

  • Wu, R. S., & Chen, L. (2006). Directional illumination analysis using beamlet decomposition and propagation. Geophysics, 71(4), S147–S159.

    Article  Google Scholar 

  • Wu, K., Otoo, E., & Shoshani, A. (2005). Optimizing connected component labeling algorithms. In Medical imaging 2005: image processing, 2005 (Vol. 5747, pp. 1965–1976). International Society for Optics and Photonics.

  • Xie, X.-B., & Wu, R.-S. (2002). Extracting angle domain information from migrated wavefield. In SEG technical program expanded abstracts 2002 (pp. 1360–1363). Society of Exploration Geophysicists.

  • Xu, S., Chauris, H., Lambare, G., & Noble, M. (2001). Common-angle migration: A strategy for imaging complex media. Geophysics, 66(6), 1877–1894.

    Article  Google Scholar 

  • Xu, S., Zhang, Y., & Tang, B. (2011). 3D angle gathers from reverse time migration. Geophysics, 76(2), S77–S92.

    Article  Google Scholar 

  • Yan, J., & Dickens, T. A. (2016). Reverse time migration angle gathers using Poynting vectors. Geophysics, 81(6), S511–S522.

    Article  Google Scholar 

  • Yoon, K., & Marfurt, K. J. (2006). Reverse-time migration using the Poynting vector. Exploration Geophysics, 37(1), 102–107.

    Article  Google Scholar 

  • Youn, O. K., & Zhou, H. W. (2001). Depth imaging with multiples. Geophysics, 66(1), 246–255.

    Article  Google Scholar 

  • Zhang, Q. S., & McMechan, G. A. (2011). Direct vector-field method to obtain angle-domain common-image gathers from isotropic acoustic and elastic reverse time migration. Geophysics, 76(5), Wb135–Wb149.

    Article  Google Scholar 

  • Zhang, D., Wang, X., Huang, Y., & Schuster, G. (2014). Warping for trim statics. In SEG technical program expanded abstracts 2014 (pp. 3946–3950). Society of Exploration Geophysicists.

  • Zheng, Y. K., Wang, Y. B., & Chang, X. (2016). Eliminating artifacts in migration of surface-related multiples: An application to marine data. Interpretation-A Journal of Subsurface Characterization, 4(4), 51–57.

    Google Scholar 

  • Zhou, H.-W., Hu, H., Zou, Z., Wo, Y., & Youn, O. (2018). Reverse time migration: A prospect of seismic imaging methodology. Earth-Science Reviews, 179, 207–227.

    Article  Google Scholar 

  • Zhu, H. (2017). Improving the stacking quality of angle-domain common-image gathers based on local warping and simulated annealing. In: SEG Technical Program Expanded Abstracts 2017 (pp. 4645–4650). https://doi.org/10.1190/segam2017-17675340.1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thongsang, P., Hu, H., Zhou, Hw. et al. Imaging Enhancement in Angle-Domain Common-Image-Gathers Using the Connected-Component Labeling Method. Pure Appl. Geophys. 177, 4897–4912 (2020). https://doi.org/10.1007/s00024-020-02518-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02518-9

Keywords

Navigation