Skip to main content
Log in

Phylogenetic and Expression Analyses of Cullin Family Members Unveil the Role of PbCUL1.C1 in Pollen Tube Growth Underlying Non-self S-RNase in Pear

  • Original Article
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Cullin (CUL) gene family organizes the largest class of RING E3 ligases which play crucial roles in the ubiquitin-proteasome system to affect plant physiological activities. However, little is known about the CUL genes in fruit trees. In this study, 57 CUL genes were isolated from the sequenced genomes of seven Rosaceae trees and were divided into three subfamilies according to phylogenetic analyses. Evolutionary analysis indicated that multiple duplication events play important role in the expansion of the CUL gene family in Rosaceae. The expression pattern shows that only four CUL genes were highly expressed in pollen and pollen tube in pear. Of these CUL genes, PbCUL1.C1 presented the highest levels of expression in pollen, but the knockdown of PbCUL1.C1 by antisense oligonucleotide (ASO) did not influence pollen tube growth. Interestingly, the pollen tube treated by both the non-self S-RNase and ASO of PbCUL1.C1 was longer than that treated by unique non-self S-RNase, suggesting that the PbCUL1.C1 plays an important role for pollen tube growth underlying non-self S-RNase in pear. These results will be useful for exploring the biological roles of CUL genes in self-incompatibility in Rosaceae trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CUL :

Cullin

ASO:

antisense oligonucleotide

CRLs:

cullin-RING ligase complexes

SLF:

S-locus F-box

SCF:

S-phase kinase-associated protein 1 (SKP1)-CUL1 (CUL1)-F-box-RING box 1 (RBX1)

HMM:

Hidden Markov model

RT-PCR:

real-time PCR

RNA-Seq:

RNA sequencing

MP:

mature pollen grains

HP:

hydrated pollen grains

PT:

growing pollen tubes

SPT:

stopped-growth pollen tubes

qRT-PCR:

quantitative real-time PCR

WGD:

whole-genome duplication

References

  • Benanti JA, Cheung SK, Brady MC, Toczyski DP (2007) A proteomic screen reveals SCFGrr1 targets that regulate the glycolytic-gluconeogenic switch. Nat Cell Biol 9(10):1184–1191

    Article  CAS  PubMed  Google Scholar 

  • Brown PH, Ho TH (1986) Barley aleurone layers secrete a nuclease in response to gibberellic acid: purification and partial characterization of the associated ribonuclease, deoxyribonuclease, and 3′-nucleotidase activities. Plant Physiol 82:801–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Zhang B, Zhao Z, Sui Z, Zhang H, Xue Y (2010) ‘A life or death decision’ for pollen tubes in S-RNase-based self-incompatibility. J Exp Bot 61:2027–2037

    Article  CAS  PubMed  Google Scholar 

  • Choi CM, Gray WM, Mooney S, Hellmann H (2015) Composition, roles, and regulation of ccullin-based ubiquitin E3 ligases. Arabidopsis Book 12:e0175

    Article  Google Scholar 

  • Dai C, Xue HW (2010) Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. EMBO J 29(11):1916–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devoto A, Nieto-Rostro M, Xie DX, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner JG (2002) COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32(4):457–466

    Article  CAS  PubMed  Google Scholar 

  • De Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  • Dong M, Zhaoyu G, Wei L, Aide W, Hui Y, Qing Y, Tianzhong L (2014) Apple MdABCF assists in the transportation of S-RNase into pollen tubes. Plant J 78:990–1002

    Article  CAS  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  CAS  PubMed  Google Scholar 

  • Franklin-Tong VE (2008) Self-incompatibility in flowering plants. Springer, Heidelberg

    Book  Google Scholar 

  • Gagne JM, Downes BP, Shiu SH, Durski AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci U S A 99:11519–11524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M (2004) GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J 37(4):626–634

    Article  CAS  PubMed  Google Scholar 

  • Graaf BHJD, Cheung AY, Andreyeva T, Levasseur K, Kieliszewski M, Wu H (2005) Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in Tobacco. Plant Cell 17:2564–2579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin–ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13(13):1678–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414(6861):271–276

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Nezames CD, Sheng L, Deng X, Wei N (2013) Cullin-RING ubiquitin ligase family in plant abiotic stress pathways. J Integr Plant Biol 55:21–30

    Article  CAS  PubMed  Google Scholar 

  • Hershko A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  • Hotton SK, Callis J (2008) Regulation of cullin RING ligases. Annu Rev Plant Biol 59:467–489

    Article  CAS  PubMed  Google Scholar 

  • Hua Z, Kao TH (2006) Identification and characterization of components of a putative Petunia S-locus F-box-containing E3 ligase complex involved in S-RNase-based self-incompatibility. Plant Cell 18:2531–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua Z, Vierstra RD (2011) The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol 62:299–334

    Article  CAS  PubMed  Google Scholar 

  • Initiative AG (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Iwano M, Takayama S (2012) Self/non-self discrimination in angiosperm self-incompatibility. Curr Opin Plant Biol 15:78–83

    Article  PubMed  Google Scholar 

  • Jia FJ, Wang CY, Huang JG, Yang GD, Wu CG, Zheng CC (2015) SCF E3 ligase PP2-B11 plays a positive role in response to salt stress in Arabidopsis. J Exp Bot 66(15):4683–4697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Duran K, Mcclure BA, Garcia-Campusano F, Rodriguez-Sotres R, Cisneros J, Busot G, Cruz-Garcia F (2013) NaStEP: a proteinase inhibitor essential to self-incompatibility and a positive regulator of HT-B stability in Nicotiana alata pollen tubes. Plant Physiol 161:97–107

    Article  CAS  PubMed  Google Scholar 

  • Ken-Ichi K et al (2010) Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science 330:796–799

    Article  CAS  Google Scholar 

  • Kipreos et al (1996) Cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell 85:829–839

    Article  CAS  PubMed  Google Scholar 

  • Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J (2009) The role of Annexin 1 in drought stress in Arabidopsis. Plant Physiol 150(3):1394–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo K, Paape T, Hatakeyama M, Entani T, Takara A, Kajihara K, Tsukahara M, Shimizu-Inatsugi R, Shimizu KK, Takayama S (2015) Gene duplication and genetic exchange drive the evolution of S-RNase-based self-incompatibility in Petunia. Nature Plants 1:14005

    Article  CAS  PubMed  Google Scholar 

  • Kubo KI, Tsukahara M, Fujii S, Murase K, Wada Y, Entani T, Iwano M, Takayama S (2016) Cullin1-P is an essential component of non-self recognition system in self-incompatibility in Petunia. Plant Cell Physiol 57(11):2403–2416

    Article  CAS  PubMed  Google Scholar 

  • Lan Z, Jian H, Zhonghua Z, Qun L, Sims TL, Yongbiao X (2010) The Skp1-like protein SSK1 is required for cross-pollen compatibility in S-RNase-based self-incompatibility. Plant J 62:52–63

    Article  CAS  Google Scholar 

  • Li S, Sun P, Williams JS, Kao TH (2014) Identification of the self-incompatibility locus F-box protein-containing complex in Petunia inflate. Plant Reprod 27:31–45

    Article  PubMed  CAS  Google Scholar 

  • Liao F, Wang L, Yang LB, Zhang L, Peng X, Sun MX (2013) Antisense oligodeoxynucleotide inhibition as an alternative and convenient method for gene function analysis in pollen tubes. PLoS One 8:e59112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luu DT, Qin X, Morse D, Cappadocia M (2000) S-RNase uptake by compatible pollen tubes in gametophytic self-incompatibility. Nature 407:649–651

    Article  CAS  PubMed  Google Scholar 

  • Mcclure B, Mou B, Canevascini S, Bernatzky R (1999) A small asparagine-rich protein required for S-allele-specific pollen rejection in Nicotiana. P Natl Acad Sci USA 96:13548–13553

    Article  CAS  Google Scholar 

  • McClure BA, Gray JE, Anderson MA, Clarke AE (1990) Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature 347:757–760

    Article  CAS  Google Scholar 

  • Minamikawa MF, Koyano R, Kikuchi S, Koba T, Sassa H (2014) Identification of SFBB-containing canonical and noncanonical SCF complexes in pollen of apple (Malus × domestica). PLoS One 9:e97642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarikas A, Hartmann T, Pan ZQ (2011) The cullin protein family. Genome Biol 12:220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sassa H, Hirano H, Ikehashi H (1992) Self-incompatibility-related RNases in styles of Japanese pear (Pyrus serotina Rehd.). Plant Cell Physiol 33:811–814

    CAS  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49–e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Tsukamoto T, K-w Y, Wang X, Huang S, McCubbin AG, T-h K (2004) Chromosome walking in the Petunia inflata self-incompatibility (S-) locus and gene identification in an 881-kb contig containing S2-RNase. Plant Mol Biol 54:727–742

    Article  CAS  PubMed  Google Scholar 

  • Wentao L, Chetelat RT (2010) A pollen factor linking inter- and intraspecific pollen rejection in tomato. Science 330:1827–1830

    Article  CAS  Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Li M, Wu J, Guo H, Li Q, Zhang Y’, Chai J, Li T, Xue Y (2013) Identification of a canonical SCFSLF complex involved in S-RNase-based self-incompatibility of Pyrus (Rosaceae). Plant Mol Biol 81:245–257

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Meng D, Gu Z, Li W, Wang A, Yang Q, Zhu Y, Li T (2014) A novel gene, MdSSK1, as a component of the SCF complex rather than MdSBP1 can mediate the ubiquitination of S-RNase in apple. J Exp Bot 65:3121–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S-L, Hiratsuka S (2000) Cultivar and developmental differences in S-protein concentration and self-incompatibility in the Japanese pear. HortScience 35:917–920

    Article  Google Scholar 

  • Zhao L, Ma W, Han B, Liang L, Zhang Y, Hong G, Xue Y (2002) An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol Bio 50:29–42

    Article  Google Scholar 

  • Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, Conaway RC, Conaway JW, Harper JW, Pavletich NP (2002) Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex. Nature 416:703–719

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Yin H, Chen J, Liu X, Gao Y, Wu J, Zhang S (2016) Gene-expression profile of developing pollen tube of Pyrus bretschneideri. Gene Expr Patterns 20:11–21

    Article  CAS  PubMed  Google Scholar 

  • Zhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A, Hammel M, Miller DJ, Walden H, Duda DM, Seyedin SN, Hoggard T, Harper JW, White KP, Schulman BA (2009) Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol Cell 36:39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundations of China (31772276 and 31672118).

Author information

Authors and Affiliations

Authors

Contributions

SLZ and CG conceived and designed the experiments. YZ wrote the manuscript. YZ, YDH, LW, GMW conducted all the experiments and data analysis. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chao Gu or Shaoling Zhang.

Ethics declarations

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Message

1. Fifty-seven CUL genes were identified from pear and other rosaceae fruit trees and can be phylogenetic classified into three groups;

2. Pear PbCUL1.C1 is expressed in all the tested tissues and more highly expressed in pollen tube;

3. The down-regulation of PbCUL1.C1 enhances pollen tube growth underlying non-self S-RNase.

Electronic supplementary material

Fig S1

The yeast two-hybrid assay. Full-length sequences of PbCUL1.C1 were amplified and inserted into vector PGBKT7. Full-length sequences of PbSSK1 and PbSSK2 were amplified and inserted into vector PGADT7. The LiC1-PEG method was used to co-transform the vectors into yeast strain AH109 cells. The transformants were selected on SD/Leu/-Trp medium. The interaction was detected on SD/-Leu/-Trp/-His/-Ade medium. The transformation of PGADT7-T and PGBKT7-Lam, PGADT7-T, and PGBKT7-53 were used as negative and positive controls. (PDF 487 kb)

Table S1

Primer pairs for CUL genes used for quantitative real-time PCR analysis. (XLSX 11 kb)

Table S2

The primer sequences used for ASO. (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Huang, Y., Wu, L. et al. Phylogenetic and Expression Analyses of Cullin Family Members Unveil the Role of PbCUL1.C1 in Pollen Tube Growth Underlying Non-self S-RNase in Pear. Plant Mol Biol Rep 38, 601–612 (2020). https://doi.org/10.1007/s11105-020-01221-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-020-01221-2

Keywords

Navigation