Skip to main content
Log in

First-Principles Calculated Structures and Carbon Binding Energies of Σ11 \({{\left\{ {10\bar{1}1} \right\}} \mathord{\left/ {\vphantom {{\left\{ {10\bar{1}1} \right\}} {\left\{ {10\bar{1}\bar{1}} \right\}}}} \right. \kern-0pt} {\left\{ {10\bar{1}\bar{1}} \right\}}}\) Tilt Grain Boundaries in Corundum Structured Metal Oxides

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

To give a basic understanding of the experimentally observed difference between Cr2O3 and Al2O3 scales on carbon permeation, we employed the first-principles calculation methods to predict atomistic structures, formation energies, and carbon binding energies of Σ11 \({{\left\{ {10\bar{1}1} \right\}} \mathord{\left/ {\vphantom {{\left\{ {10\bar{1}1} \right\}} {\left\{ {10\bar{1}\bar{1}} \right\}}}} \right. \kern-0pt} {\left\{ {10\bar{1}\bar{1}} \right\}}}\) tilt grain boundaries (GB) in both α-Al2O3 and α-Cr2O3 with a corundum structure. Owing to different surface terminations, we predicted two distinct kinds of stable atomistic structures for the GB: one with measurable voids and high formation energy, and the other with a compact interface and low formation energy. The predicted GB structures agree with experimental images. No significant structural difference was found for the same GB in α-Al2O3 and α-Cr2O3. Moreover, we predicted that atomic carbon would bind to the Σ11 \({{\left\{ {10\bar{1}1} \right\}} \mathord{\left/ {\vphantom {{\left\{ {10\bar{1}1} \right\}} {\left\{ {10\bar{1}\bar{1}} \right\}}}} \right. \kern-0pt} {\left\{ {10\bar{1}\bar{1}} \right\}}}\) GB in α-Cr2O3 appreciably more strongly than in α-Al2O3. Therefore, our computational results suggest that chemical affinity rather than geometric structure of the GBs is related to different carbon permeation behaviors in Al2O3 and Cr2O3 scales.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. H. Perepezko, Science326, 2009 (1068).

    Article  CAS  Google Scholar 

  2. D. J. Young and J. Zhang, JOM70, 2018 (1493).

    Article  CAS  Google Scholar 

  3. M. P. Brady, I. G. Wright and B. Gleeson, JOM52, 2000 (16).

    Article  CAS  Google Scholar 

  4. N. P. Padture, M. Gell and E. H. Jordan, Science Science (New York, N.Y.)296, 2002 (280). https://doi.org/10.1126/science.1068609.

    Article  CAS  Google Scholar 

  5. R. Prescott and M. J. Graham, Oxidation of Metals38, 1992 (233). https://doi.org/10.1007/bf00666913.

    Article  CAS  Google Scholar 

  6. G. H. Meier, et al., Oxidation of Metals74, 2010 (319). https://doi.org/10.1007/s11085-010-9215-5.

    Article  CAS  Google Scholar 

  7. N. Otsuka, Y. Shida and H. Fujikawa, Oxidation of Metals32, 1989 (13).

    Article  CAS  Google Scholar 

  8. J. Pirón Abellán, T. Olszewski, H. J. Penkalla, G. H. Meier, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures26, 2009 (63).

    Article  Google Scholar 

  9. T. D. Nguyen, J. Q. Zhang and D. J. Young, Materials at High Temperatures32, 2015 (16). https://doi.org/10.1179/0960340914Z.00000000056.

    Article  CAS  Google Scholar 

  10. M. H. S. Bidabadi, et al., Corrosion Science 2019. https://doi.org/10.1016/j.corsci.2019.108252.

    Article  Google Scholar 

  11. H. J. Grabke, K. Ohla, J. Peters and I. Wolf, Materials and Corrosion34, 1983 (495). https://doi.org/10.1002/maco.19830341002.

    Article  CAS  Google Scholar 

  12. H. M. Tawancy and N. M. Abbas, Journal of Materials Science27, (4), 1992 (1061). https://doi.org/10.1007/bf01197661.

    Article  CAS  Google Scholar 

  13. H. M. Tawancy, Oxidation of Metals83, 2015 (167). https://doi.org/10.1007/s11085-014-9513-4.

    Article  CAS  Google Scholar 

  14. S. B. Newcomb and W. M. Stobbs, Oxidation of metals26, 1986 (431).

    Article  CAS  Google Scholar 

  15. K. Kaya, S. Hayashi and S. Ukai, ISIJ international54, 2014 (1379).

    Article  CAS  Google Scholar 

  16. F. Rouillard and T. Furukawa, Corrosion Science105, 2016 (120).

    Article  CAS  Google Scholar 

  17. F. Rouillard, G. Moine, L. Martinelli and J. Ruiz, Oxidation of Metals77, 2012 (27).

    Article  CAS  Google Scholar 

  18. T. Gheno, D. Monceau and D. J. Young, Corrosion Science64, 2012 (222).

    CAS  Google Scholar 

  19. C. S. Giggins and F. S. Pettit, Oxidation of Metals14, 1980 (363). https://doi.org/10.1007/bf00603609.

    Article  CAS  Google Scholar 

  20. C. Fujii and R. Meussner, Journal of the Electrochemical Society114, 1967 (435).

    Article  CAS  Google Scholar 

  21. I. Wolf and H. J. Grabke, Solid State Communications54, 1985 (5). https://doi.org/10.1016/0038-1098(85)91021-X.

    Article  CAS  Google Scholar 

  22. D. J. Young, T. D. Nguyen, P. Felfer, J. Zhang and J. M. Cairney, Scripta Materialia77, 2014 (29).

    Article  CAS  Google Scholar 

  23. T. D. Nguyen, A. La Fontaine, L. Yang, J. M. Cairney, J. Zhang and D. J. Young, Corrosion Science132, 2018 (125). https://doi.org/10.1016/j.corsci.2017.12.024.

    Article  CAS  Google Scholar 

  24. J. Cho, H. Chan, M. Harmer and J. Rickman, Journal of the American Ceramic Society81, 2005 (3001). https://doi.org/10.1111/j.1151-2916.1998.tb02726.x.

    Article  Google Scholar 

  25. T. Nakagawa, et al., Acta Materialia55, 2007 (6627).

    Article  CAS  Google Scholar 

  26. Y. Lei, Y. Gong, Z. Duan and G. Wang, Physical Review B87, 2013 (214105). https://doi.org/10.1103/PhysRevB.87.214105.

    Article  CAS  Google Scholar 

  27. T. Höche, P. R. Kenway, H.-J. Kleebe, M. Rühle and P. A. Morris, Journal of the American Ceramic Society77, 1994 (339). https://doi.org/10.1111/j.1151-2916.1994.tb07001.x.

    Article  Google Scholar 

  28. P. R. Kenway, Journal of the American Ceramic Society77, 1994 (349). https://doi.org/10.1111/j.1151-2916.1994.tb07002.x.

    Article  CAS  Google Scholar 

  29. T. Höche, P. R. Kenway, H.-J. Kleebe, M. W. Finnis and M. Rühle, Journal of Physics and Chemistry of Solids55, 1994 (1067). https://doi.org/10.1016/0022-3697(94)90125-2.

    Article  Google Scholar 

  30. S.-D. Mo, W.-Y. Ching and R. H. French, Journal of the American Ceramic Society79, 1996 (627). https://doi.org/10.1111/j.1151-2916.1996.tb07921.x.

    Article  CAS  Google Scholar 

  31. G. Kresse, Journal of Non-Crystalline Solids192–193, 1995 (222). https://doi.org/10.1016/0022-3093(95)00355-X.

    Article  Google Scholar 

  32. G. Kresse and J. Furthmüller, Computational Materials Science6, 1996 (15). https://doi.org/10.1016/0927-0256(96)00008-0.

    Article  CAS  Google Scholar 

  33. G. Kresse and D. Joubert, Physical Review B59, 1999 (1758). https://doi.org/10.1103/PhysRevB.59.1758.

    Article  CAS  Google Scholar 

  34. J. P. Perdew, K. Burke and M. Ernzerhof, Physical review letters77, 1996 (3865).

    Article  CAS  Google Scholar 

  35. A. I. Liechtenstein, V. V. Anisimov and J. Zaanen, Physical Review. B, Condensed Matter52, 1995 (R5467). https://doi.org/10.1103/physrevb.52.r5467.

    Article  CAS  Google Scholar 

  36. Y. Wang, et al., Surface Science606, 2012 (1422). https://doi.org/10.1016/j.susc.2012.05.006.

    Article  CAS  Google Scholar 

  37. C. Gray, Y. Lei and G. Wang, Journal of Applied Physics120, 2016 (215101). https://doi.org/10.1063/1.4970882.

    Article  CAS  Google Scholar 

  38. J. C. Boettger, Physical Review B55, 1997 (750).

    Article  CAS  Google Scholar 

  39. F. O. Lebreau, M. M. Islam, B. Diawara and P. Marcus, The Journal of Physical Chemistry C118, 2014 (18133).

    Article  CAS  Google Scholar 

  40. H. d’Amour, D. Schiferl, W. Denner, H. Schulz and W. B. Holzapfel, Journal of Applied Physics49, 1978 (4411).

    Article  Google Scholar 

  41. L. W. Finger and R. M. Hazen, Journal of Applied Physics51, 1980 (5362).

    Article  CAS  Google Scholar 

  42. I. Milas, B. Hinnemann and A. E. Carter, Journal of Materials Research23, 2008 (22). https://doi.org/10.1557/jmr.2008.0188.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tsinghua University Initiative Scientific Research Program and the National Magnetic Confinement Fusion Energy Research Project of China (2015GB118001). Y. Zheng thanks the CSC for the financial support (201706210110) to visit University of Pittsburgh. G. Wang gratefully acknowledges computational resources provided by the University of Pittsburgh Center for Research Computing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guofeng Wang or Zhi-Gang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Liu, Z., Lei, Y. et al. First-Principles Calculated Structures and Carbon Binding Energies of Σ11 \({{\left\{ {10\bar{1}1} \right\}} \mathord{\left/ {\vphantom {{\left\{ {10\bar{1}1} \right\}} {\left\{ {10\bar{1}\bar{1}} \right\}}}} \right. \kern-0pt} {\left\{ {10\bar{1}\bar{1}} \right\}}}\) Tilt Grain Boundaries in Corundum Structured Metal Oxides. Oxid Met 94, 37–49 (2020). https://doi.org/10.1007/s11085-020-09977-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-09977-4

Keywords

Navigation