Skip to main content
Log in

Experimental study of QoE improvements towards adaptive HD video streaming using flexible dual TCP-UDP streaming protocol

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

The Flexible Dual TCP-UDP Streaming Protocol (FDSP) combines the reliability of TCP with the low latency of UDP, thus providing transport layer improvements towards maintaining high QoE of multi-bitrate videos in adaptive streaming. FDSP delivers the more critical parts of the video data via TCP and the rest via UDP. FDSP also uses Bitstream Prioritization (BP), a sliding scale that determines the proportion of video data that is sent using TCP. BP can be adjusted according to the level of network congestion. FDSP-based streaming reduces total rebuffering time by over 90%, and rebuffering instances by 50% in many cases compared to TCP-based streaming. At the same time, packet loss reduces by over 75% for most BP levels compared to UDP-based streaming. In addition, FDSP-based streaming is potentially more suitable for adaptive streaming compared to the state-of-the-art TCP-based HTTP Adaptive Streaming (HAS), which is often plagued by high latency and high bandwidth requirements. In contrast, FDSP requires significantly less bandwidth than TCP in congested networks while exhibiting more stable client buffers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. RTT latency and RTT delay are used interchangeably.

References

  1. VNI Global Fixed and Mobile Internet Traffic Forecasts. http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html. Accessed 3 Mar 2018

  2. 4k Internet TV & Video to be Viewed by 1 in 10 US Residents, August 2016. https://www.juniperresearch.com/press/press-releases/4k-internet-tv-video-content-to-be-viewed-by-1-i. Accessed 3 Mar 2018

  3. Jiang, J., Sekar, V., Zhang, H.: Improving fairness, efficiency, and stability in http-based adaptive video streaming with festive. IEEE ACM Trans. Netw. 22(1), 326–340 (2014). https://doi.org/10.1109/TNET.2013.2291681

    Article  Google Scholar 

  4. Krishnan, S.S., Sitaraman, R.K.: Video stream quality impacts viewer behavior: inferring causality using quasi-experimental designs. IEEE ACM Trans. Netw. 21(6), 2001–2014 (2013). https://doi.org/10.1109/TNET.2013.2281542. (ISSN 1063-6692)

    Article  Google Scholar 

  5. What YOU Need to Know About HLS: Pros and Cons, January 2016. http://blog.red5pro.com/what-you-need-to-know-about-hls-pros-and-cons/. Accessed 3 Mar 2018

  6. Zhao, J., Lee, B., Lee, T.-W., Kim, C.-G., Shin, J.-K., Cho, J.: Flexible Dual TCP/UDP Streaming for H.264 HD Video over WLANs. In: Proceedings of the 7th International Conference on Ubiquitous Information Management and Communication (ICUIMC 2013), pp. 34:1–34:9. Kota Kinabalu, Malaysia (2013). https://doi.org/10.1145/2448556.2448590(ISBN 978-1-4503-1958-4)

  7. Sinky, M., Dhamodaran, A., Lee, B., Zhao, J.: Analysis of H.264 bitstream prioritization for dual TCP/UDP streaming of HD video over WLANs. In: IEEE 12th Consumer Communications and Networking Conference (CCNC 2015), pp. 576–581. Las Vegas, USA (2015)

  8. Dhamodaran, A., Sinky, M., Lee, B.: Adaptive bitstream prioritization for dual TCP/UDP streaming of HD video. In: The Tenth International Conference on Systems and Networks Communications (ICSNC 2015), pp. 35–40. Barcelona, Spain (2015)

  9. Gatimu, K., Dhamodaran, A., Johnson, T., Lee, B.: Experimental study of low-latency HD VOD streaming using flexible dual TCP-UDP streaming protocol. In: 2018 15th IEEE Annual Consumer Communications Networking Conference (CCNC), pp. 1–6 (2018). https://doi.org/10.1109/CCNC.2018.8319234

  10. Huang, T.-Y., Johari, R., McKeown, N., Trunnell, M., Watson, M.: A buffer-based approach to rate adaptation: evidence from a large video streaming service. In: Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, pp. 187–198. ACM, New York (2014). https://doi.org/10.1145/2619239.2626296(ISBN 978-1-4503-2836-4)

  11. ISO/IEC TR 23009-3:2015—Information technology—dynamic adaptive streaming over HTTP (DASH)—Part 3: implementation guidelines. https://www.iso.org/standard/63562.html. Accessed 3 Mar 2018

  12. Alex Z.: Smooth Streaming Technical Overview. http://www.iis.net/learn/media/on-demand-smooth-streaming/smooth-streaming-technical-overview. Accessed 3 Mar 2018

  13. Adobe Systems. HTTP Dynamic Streaming. http://www.adobe.com/products/hds-dynamic-streaming.html. Accessed 3 Mar 2018

  14. Apple Inc. HTTP Live Streaming Internet—Draft. https://tools.ietf.org/html/draft-pantos-http-live-streaming-19. Accessed 3 Mar 2018

  15. ISO/IEC 23009-1:2012—Information technology—dynamic adaptive streaming over HTTP (DASH)—Part 1: media presentation description and segment formats. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57623

  16. Kua, J., Armitage, G., Branch, P.: A survey of rate adaptation techniques for dynamic adaptive streaming over http. IEEE Commun. Surv. Tut. 19(3), 1842–1866 (2017). https://doi.org/10.1109/COMST.2017.2685630. (ISSN 1553-877X)

    Article  Google Scholar 

  17. Huang, T.-Y., Handigol, N., Heller, B., McKeown, N., Johari, R.: Confused, timid, and unstable: picking a video streaming rate is hard. In: Proceedings of the 2012 Internet Measurement Conference, IMC ’12, pp. 225–238. ACM, New York (2012). https://doi.org/10.1145/2398776.2398800(ISBN 978-1-4503-1705-4)

  18. Spiteri, K., Urgaonkar, R., Sitaraman, R.K.: Bola: Near-optimal bitrate adaptation for online videos. In: IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications, pp. 1–9 (2016). https://doi.org/10.1109/INFOCOM.2016.7524428

  19. Yin, X., Jindal, A., Sekar, V., Sinopoli, B.: A control-theoretic approach for dynamic adaptive video streaming over http. SIGCOMM Comput. Commun. Rev. 45(4), 325–338 (2015). https://doi.org/10.1145/2829988.2787486. (ISSN 0146-4833)

    Article  Google Scholar 

  20. Popa, L., Ghodsi, A., Stoica, I.: Http as the narrow waist of the future internet. In: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX, pp. 6:1–6:6. ACM, New York (2010). https://doi.org/10.1145/1868447.1868453(ISBN 978-1-4503-0409-2)

  21. Peer5, 2018. https://www.peer5.com/. Accessed 3 Mar 2018

  22. Dutton, S.: WebRTC in the real world: STUN, TURN and signaling—HTML5 Rocks. https://www.html5rocks.com/en/tutorials/webrtc/infrastructure/

  23. Wang, B., Kurose, J., Shenoy, P., Towsley, D.: Multimedia streaming via TCP: an analytic performance study. ACM Trans. Multimed. Comput. Commun. Appl. 4(2), 16:1–16:22 (2008). https://doi.org/10.1145/1352012.1352020. (ISSN 1551-6857)

    Article  Google Scholar 

  24. Aggarwal, A., Savage, S., Anderson, T.: Understanding the performance of TCP pacing. In: Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), vol. 3, pp. 1157–1165 (2000). https://doi.org/10.1109/INFCOM.2000.832483

  25. Chakareski, J., Sasson, R., Eleftheriadis, A., Shapiro, O.: System and method for low delay, interactive communication using multiple TCP connections and scalable coding, (2014). http://www.google.com/patents/US8699522. U.S. Classification 370/474, 370/536, 375/240.05, 709/231; International Classification H04J3/24; Cooperative Classification H04L65/607, H04L47/32, H04L47/10, H04L47/193, H04L47/2416, H04L65/4015, H04L47/283, H04L65/80

  26. Swaminathan, V., Wei, S.: Low latency live video streaming using HTTP chunked encoding. In: 2011 IEEE 13th International Workshop on Multimedia Signal Processing, pp. 1–6 (2011). https://doi.org/10.1109/MMSP.2011.6093825

  27. Houzé, P., Mory, E., Texier, G., Simon, G.: Applicative-layer multipath for low-latency adaptive live streaming. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–7 (2016). https://doi.org/10.1109/ICC.2016.7511550

  28. Hoffman, B.: Too chunky: performance and HTTP chunked encoding (2012). https://zoompf.com/blog/2012/05/too-chunky/. Accessed 3 Mar 2018

  29. Wei, S., Swaminathan, V.: Low latency live video streaming over HTTP 2.0. In: Proceedings of Network and Operating System Support on Digital Audio and Video Workshop, NOSSDAV ’14, pp. 37:37–37:42. ACM, New York (2014). https://doi.org/10.1145/2578260.2578277(ISBN 978-1-4503-2706-0)

  30. Cherif, W., Fablet, Y., Nassor, E., Taquet, J., Fujimori, Y.: DASH fast start using HTTP/2. In: Proceedings of the 25th ACM Workshop on Network and Operating Systems Support for Digital Audio and Video, NOSSDAV ’15, pp. 25–30. ACM, New York (2015). https://doi.org/10.1145/2736084.2736088(ISBN 978-1-4503-3352-8)

  31. Huysegems, R., van der Hooft, J., Bostoen, T., Rondao Alface, P., Petrangeli, S., Wauters, T., De Turck, F.: HTTP/2-based methods to improve the live experience of adaptive streaming. In: Proceedings of the 23rd ACM International Conference on Multimedia, MM ’15, pp. 541–550. ACM, New York (2015). https://doi.org/10.1145/2733373.2806264(ISBN 978-1-4503-3459-4)

  32. Theedom, A.: Tracking HTTP/2 Adoption: Stagnation—DZone Web Dev (2016). https://dzone.com/articles/tracking-http2-adoption-stagnation. Accessed 3 Mar 2018

  33. Liu, X., Yin, H., Lin, C.: A novel and high-quality measurement study of commercial CDN-P2p live streaming. In: 2009 WRI International Conference on Communications and Mobile Computing, vol. 3, pp. 325–329 (2009). https://doi.org/10.1109/CMC.2009.152

  34. Lu, Z., Wang, Y., Yang, Y.R.: An analysis and comparison of CDN-P2p-hybrid content delivery system and model. J. Commun. (2012). https://doi.org/10.4304/jcm.7.3.232-245. http://www.jocm.us/index.php?m=content&c=index&a=show&catid=39&id=90(ISSN 1796-2021)

  35. Xu, D., Kulkarni, S.S., Rosenberg, C., Chai, H.-K.: Analysis of a CDN-P2p hybrid architecture for cost-effective streaming media distribution. Multimed. Syst. 11(4), 383–399 (2006). https://doi.org/10.1007/s00530-006-0015-3. (ISSN 0942-4962, 1432–1882)

    Article  Google Scholar 

  36. Seyyedi, S.M.Y., Akbari, B.: Hybrid CDN-P2P architectures for live video streaming: comparative study of connected and unconnected meshes. In: 2011 International Symposium on Computer Networks and Distributed Systems (CNDS), pp. 175–180 (2011). https://doi.org/10.1109/CNDS.2011.5764567

  37. Thi, ThuH, Tran, K., Jinsul, N.J.: Design and deployment of low-delay hybrid CDN-P2P architecture for live video streaming over the web. Wirel. Pers. Commun. 94(3), 513–525 (2017). https://doi.org/10.1007/s11277-015-3144-1

    Article  Google Scholar 

  38. Michaels, C.: HLS Latency Sucks, But Here’s How to Fix It | Wowza (2017). https://www.wowza.com/blog/hls-latency-sucks-but-heres-how-to-fix-it. Accessed 3 Mar 2018

  39. Velten, T., Hinden, R., Sax, J.: Reliable data protocol (1984). https://tools.ietf.org/html/draft-ietf-sigtran-reliable-udp-00. Accessed 3 Mar 2018

  40. Bova, T., Krivoruchka, T.: Reliable UDP protocol. https://tools.ietf.org/html/draft-ietf-sigtran-reliable-udp-00. Accessed 3 Mar 2018

  41. Williams, J.: Microsoft TV test (2011). https://www.viavisolutions.com/en-us/literature/microsoft-tv-test-application-notes-en.pdf. Accessed 3 Mar 2018

  42. Floyd, S., Handley, M., Kohler, E.: Datagram congestion control protocol (DCCP). https://tools.ietf.org/html/rfc4340. Accessed 3 Mar 2018

  43. Wilk, A., Iyengar, J., Swett, I., Hamilton, R.: QUIC: a UDP-based secure and reliable transport for HTTP/2. https://tools.ietf.org/html/draft-hamilton-early-deployment-quic-00. Accessed 3 Mar 2018

  44. Timmerer, C., Bertoni, A.: Advanced transport options for the dynamic adaptive streaming over HTTP. arXiv preprint arXiv:1606.00264, (2016)

  45. VideoLAN. http://www.videolan.org/. Accessed 3 Mar 2018

  46. Network Latency and Packet Loss Emulation @ Calomel.org. https://calomel.org/network_loss_emulation.html. Accessed 3 Mar 2018

  47. IP Latency Statistics: (2017). http://www.verizonenterprise.com/about/network/latency/. Accessed 3 Mar 2018

  48. DASH Industry Forum. Guidelines for Implementation: DASH-AVC/264 Test cases and Vectors (2014). https://dashif.org/wp-content/uploads/2016/06/DASH-AVC-264-Test-Vectors-v1.0.pdf. Accessed 3 Mar 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Gatimu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by B. Li.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatimu, K., Dhamodaran, A., Johnson, T. et al. Experimental study of QoE improvements towards adaptive HD video streaming using flexible dual TCP-UDP streaming protocol. Multimedia Systems 26, 479–493 (2020). https://doi.org/10.1007/s00530-020-00653-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-020-00653-w

Keywords

Navigation