Skip to main content

Advertisement

Log in

Annual Cycle of Freshwater Diatoms in the High Arctic Revealed by Multiparameter Fluorescent Staining

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Diatoms (Bacillariophyceae) are important primary producers in a wide range of hydro-terrestrial habitats in polar regions that are characterized by many extreme environmental conditions. Nevertheless, how they survive periods of drought and/or freeze remains unknown. A general strategy of microorganisms to overcome adverse conditions is dormancy, but morphologically distinct diatom resting stages are rare. This study aimed to evaluate the annual cycle of freshwater diatoms in the High Arctic (Central Spitsbergen) and provide an insight into their physiological cell status variability. The diversity and viability of diatom cells were studied in samples collected five times at four study sites, tracing the key events for survival (summer vegetative season, autumn dry-freezing, winter freezing, spring melting, summer vegetative season [again]). For viability evaluation, a multiparameter fluorescent staining was used in combination with light microscopy and allowed to reveal the physiological status at a single-cell level. The proportions of the cell categories were seasonally and locality dependent. The results suggested that a significant portion of vegetative cells survive winter and provide an inoculum for the following vegetative season. The ice thickness significantly influenced spring survival. The thicker the ice layer was, the more dead cells and fewer other stages were observed. The influence of the average week max–min temperature differences in autumn and winter was not proven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim GH, Klochkova TA, Kang SH (2008) Notes on freshwater and terrestrial algae from Ny-Ålesund, Svalbard (high Arctic Sea area). J. Environ. Biol. 29:485–491

    PubMed  Google Scholar 

  2. Pinseel E, Van de Vijver B, Kavan J et al (2017) Diversity, ecology and community structure of the freshwater littoral diatom flora from Petuniabukta (Spitsbergen). Polar Biol. 40:533–551. https://doi.org/10.1007/s00300-016-1976-0

    Article  Google Scholar 

  3. Douglas MSV, Smol JP (1995) Periphytic diatom assemblages from High Arctic ponds. J. Phycol. 31:60–69. https://doi.org/10.1111/j.0022-3646.1995.00060.x

    Article  Google Scholar 

  4. Vincent WF, Hobbie JE, Laybourn-Parry J (2008) Introduction to the limnology of high-latitude lake and river ecosystems. In: Vincent WF, Laybourn-Parry J (eds) Polar Lakes and Rivers. Oxford University Press, New York, pp 1–23

    Chapter  Google Scholar 

  5. Lizotte MP (2008) Phytoplankton and primary production. In: Vincent WF, Laybourn-Parry J (eds) Polar Lakes and Rivers. Oxford University Press, New York, pp 157–178

    Chapter  Google Scholar 

  6. Mellor CJ (2012) Arctic water source dynamics, stream habitat and biodiversity in a changing climate: a field-based investigation in Swedish Lapland. University of Birmingham

  7. Karlsson JOM, Toner M (1996) Long-term storage of tissues by cryopreservation: critical issues. Biomaterials 17:243–256. https://doi.org/10.1016/0142-9612(96)85562-1

    Article  CAS  PubMed  Google Scholar 

  8. Meryman HT (1974) Freezing injury and its prevention in living cells. Annu. Rev. Biophys. Bioeng. 3:341–363. https://doi.org/10.1146/annurev.bb.03.060174.002013

    Article  CAS  PubMed  Google Scholar 

  9. Humlum O, Instanes A, Sollid JL (2003) Permafrost in Svalbard: a review of research history, climatic background and engineering challenges. Polar Res. 22:191–215. https://doi.org/10.3402/polar.v22i2.6455

    Article  Google Scholar 

  10. Cooper EJ (2014) Warmer shorter winters disrupt Arctic terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 45:271–295. https://doi.org/10.1146/annurev-ecolsys-120213-091620

    Article  Google Scholar 

  11. Serreze MC, Walsh JE, Chapin FS et al (2000) Observational evidence of recent change in the northern high-latitude environment. Clim. Chang. 46:159–207. https://doi.org/10.1023/A:1005504031923

    Article  Google Scholar 

  12. Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res. Part I Oceanogr. Res. Pap. 49:2163–2181. https://doi.org/10.1016/S0967-0637(02)00122-X

  13. Bayer-Giraldi M, Weikusat I, Besir H, Dieckmann G (2011) Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice. Cryobiology 63:210–219. https://doi.org/10.1016/j.cryobiol.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  14. Raymond JA, Fritsen CH (2001) Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms. Cryobiology 43:63–70. https://doi.org/10.1006/cryo.2001.2341

    Article  CAS  PubMed  Google Scholar 

  15. Gwak IG, Sic Jung W, Kim HJ et al (2010) Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile. Mar. Biotechnol. 12:630–639. https://doi.org/10.1007/s10126-009-9250-x

    Article  CAS  PubMed  Google Scholar 

  16. Raymond JA, Morgan-Kiss R (2013) Separate origins of ice-binding proteins in Antarctic Chlamydomonas species. PLoS One 8:6–11. https://doi.org/10.1371/journal.pone.0059186

    Article  CAS  Google Scholar 

  17. Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr. Issues Mol. Biol. 6:125–136. https://doi.org/10.21775/cimb.006.125

  18. Liu X, Wang Y, Gao H, Xu X (2011) Identification and characterization of genes encoding two novel LEA proteins in Antarctic and temperate strains of Chlorella vulgaris. Gene 482:51–58. https://doi.org/10.1016/j.gene.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  19. Greenway H, Setter TL (1979) Accumulation of proline and sucrose during the first hours after transfer of Chlorella emersonii to high NaCl. Aust. J. Plant Physiol. 6:69–79. https://doi.org/10.1071/PP9790069

    Article  CAS  Google Scholar 

  20. Blunden G, Smith BE, Irons MW, Yang MH, Roch OG, Patel AV (1992) Betaines and tertiary sulphonium compounds from 62 species of marine algae. Biochem. Syst. Ecol. 20:373–388. https://doi.org/10.1016/0305-1978(92)90050-N

    Article  CAS  Google Scholar 

  21. Keller MD, Bellows WK, Guillard RRL (1989) Dimethyl sulfide production in marine phytoplankton. In: Cooper WJ (ed) Saltzman, E. American Chemical Society, Biogenic Sulfur in the Environment, pp 167–182

    Google Scholar 

  22. Henderson RJ, Hegseth EN, Park MT (1998) Seasonal variation in lipid and fatty acid composition of ice algae from the Barents Sea. Polar Biol. 20:48–55. https://doi.org/10.1007/s003000050275

    Article  Google Scholar 

  23. Teoh M-L, Chu W-L, Marchant H, Phang S-M (2004) Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J. Appl. Phycol. 16:421–430. https://doi.org/10.1007/s10811-004-5502-3

    Article  CAS  Google Scholar 

  24. Kuwata A, Hama T, Takahashi M (1993) Ecophysiological characterization of two life forms, resting spores and resting cells, of a marine planktonic diatom, Chaetoceros pseudocurvisetus, formed under nutrient depletion. Mar. Ecol. Prog. Ser. 102:245–256. https://doi.org/10.3354/meps102245

    Article  Google Scholar 

  25. Jewson DH, Granin NG, Zhdanov AA, Gorbunova LA, Bondarenko NA, Gnatovsky RY (2008) Resting stages and ecology of the planktonic diatom Aulacoseira skvortzowii in Lake Baikal. Limnol. Oceanogr. 53:1125–1136. https://doi.org/10.4319/lo.2008.53.3.1125

    Article  Google Scholar 

  26. Lund JWG (1954) The seasonal cycle of the plankton diatom, Melosira italica (Ehr.) Kutz. subsp. subarctica O. Müll. J. Ecol. 42:151–179. https://doi.org/10.2307/2256984

  27. Anderson OR (1975) Ultrastructure and cytochemistry of resting cell formation in Amphora coffeaeformis (Bacillariophyceae). J. Phycol. 11:272–281. https://doi.org/10.1111/j.1529-8817.1975.tb02778.x

    Article  Google Scholar 

  28. Sicko-Goad L, Stoermer EF, Fahnenstiel G (1986) Rejuvenation of Melosira granulata (Bacillariophyceae) resting cells from the anoxic sediments of Douglas Lake, Michigan. I. Light microscopy and 14 C uptake. J. Phycol. 22:22–28. https://doi.org/10.1111/j.1529-8817.1986.tb02510.x

    Article  Google Scholar 

  29. Round FE, Crawford RM, Mann DG (1990) Diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  30. McQuoid MR, Hobson LA (1996) Diatom resting stages. J. Phycol. 32:889–902. https://doi.org/10.1111/j.0022-3646.1996.00889.x

    Article  Google Scholar 

  31. Souffreau C, Vanormelingen P, Sabbe K, Vyverman W (2013) Tolerance of resting cells of freshwater and terrestrial benthic diatoms to experimental desiccation and freezing is habitat-dependent. Phycologia 52:14–24. https://doi.org/10.2216/12-087.1

  32. McQuoid MR, Hobson LA (1995) Importance of resting stages in diatom seasonal succession. J. Phycol. 31:44–50. https://doi.org/10.1111/j.0022-3646.1995.00044.x

    Article  Google Scholar 

  33. Kuwata A, Takahashi M (1999) Survival and recovery of resting spores and resting cells of the marine planktonic diatom Chaetoceros pseudocurvisetus under fluctuating nitrate conditions. Mar. Biol. 134:471–478. https://doi.org/10.1007/s002270050563

    Article  Google Scholar 

  34. Edlund MB, Stoermer EF, Taylor CM (1996) Aulacoseira skvortzowii sp. nov. (Bacillariophyta), a poorly understood diatom from Lake Baikal, Russia 1. J. Phycol. 32:165–175. https://doi.org/10.1111/j.0022-3646.1996.00165.x

    Article  Google Scholar 

  35. Tashyreva D, Elster J (2016) Annual cycles of two cyanobacterial mat communities in hydro-terrestrial habitats of the High Arctic. Microb. Ecol. 71:887–900. https://doi.org/10.1007/s00248-016-0732-x

    Article  CAS  PubMed  Google Scholar 

  36. Pichrtová M, Hájek T, Elster J (2016) Annual development of mat-forming conjugating green algae Zygnema spp. in hydro-terrestrial habitats in the Arctic. Polar Biol. 39:1653–1662. https://doi.org/10.1007/s00300-016-1889-y

    Article  Google Scholar 

  37. Tashyreva D, Elster J, Billi D (2013) A novel staining protocol for multiparameter assessment of cell heterogeneity in Phormidium populations (cyanobacteria) employing fluorescent dyes. PLoS One 8:1–12. https://doi.org/10.1371/journal.pone.0055283

    Article  CAS  Google Scholar 

  38. Norwegian Polar Institute Map data Svalbard 1:1 000 000. https://data.npolar.no. Accessed 10 Oct 2019

  39. Major H, Nagy J (1972) Geology of the Adventdalen map area

  40. Piepjohn K, Stange R, Jochmann M, Hübner C (2012) The geology of Longyearbyen. Longyearbyen feltbiologiske forening

    Google Scholar 

  41. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 4:439–473. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  42. Førland EJ, Hanssen-Bauer I, Nordli PØ (1997) Climate statistics & longterm series of temperature and precipitation at Svalbard and Jan Mayen. DNMI Klima 21:73

    Google Scholar 

  43. UNIS weather stations Adventdalen (hour dataset) 2016–now. https://www.unis.no/resources/weather-stations/. Accessed 10 Dec 2019

  44. Oksanen J, Blanchet GF, Friendly M, et al. CRAN - Package vegan. In: Vegan Community Ecol. Packag. R Packag. version 2.5–6. https://cran.r-project.org/web/packages/vegan/index.html. Accessed 9 Sep 2019

  45. Davey MC (1989) The effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. Polar Biol. 10:29–36. https://doi.org/10.1007/BF00238287

    Article  Google Scholar 

  46. Elster J, Benson EE (2004) Life in the polar terrestrial environment with a focus on algae and cyanobacteria. In: Lane N, Benson EE (eds) Fuller B. Taylor and Francis, Life in the Frozen State, pp 111–150

  47. Morgner E, Elberling B, Strebel D, Cooper EJ (2010) The importance of winter in annual ecosystem respiration in the High Arctic: effects of snow depth in two vegetation types. Polar Res. 29:58–74. https://doi.org/10.1111/j.1751-8369.2010.00151.x

    Article  CAS  Google Scholar 

  48. Gouttevin I, Menegoz M, Dominé F, Krinner G, Koven C, Ciais P, Tarnocai C, Boike J (2012) How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area. J. Geophys. Res. Biogeosci. 117:1–11. https://doi.org/10.1029/2011JG001916

    Article  CAS  Google Scholar 

  49. Coulson SJ, Leinaas HP, Ims RA, Søvik G (2000) Experimental manipulation of the winter surface ice layer: the effects on a High Arctic soil microarthropod community. Ecography 23:299–306. https://doi.org/10.1111/j.1600-0587.2000.tb00285.x

  50. Putkonen J, Roe G (2003) Rain-on-snow events impact soil temperatures and affect ungulate survival. Geophys. Res. Lett. 30:1–4. https://doi.org/10.1029/2002GL016326

    Article  Google Scholar 

  51. Rennert KJ, Roe G, Putkonen J, Bitz CM (2009) Soil thermal and ecological impacts of rain on snow events in the circumpolar arctic. J. Clim. 22:2302–2315. https://doi.org/10.1175/2008JCLI2117.1

    Article  Google Scholar 

  52. Tashyreva D, Elster J (2012) Production of dormant stages and stress resistance of polar cyanobacteria. In: Hanslmeier A (ed) Life on Earth and Other Planetary Bodies. Springer Science, Dordrecht, pp 367–386

  53. Pichrtová M, Kulichová J, Holzinger A (2014) Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta) from polar habitats. PLoS One 9:e113137. https://doi.org/10.1371/journal.pone.0113137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pichrtová M, Hájek T, Elster J (2014) Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation. FEMS Microbiol. Ecol. 89:270–280. https://doi.org/10.1111/1574-6941.12288

    Article  CAS  PubMed  Google Scholar 

  55. Hawes I (1990) Effects of freezing and thawing on a species of Zygnema (Chlorophyta) from the Antarctic. Phycologia 29:326–331. https://doi.org/10.2216/i0031-8884-29-3-326.1

    Article  Google Scholar 

  56. Davey MC (1991) Effects of physical factors on the survival and growth of Antarctic terrestrial algae. Br. Phycol. J. 26:315–325. https://doi.org/10.1080/00071619100650281

    Article  Google Scholar 

  57. Remias D, Karsten U, Lütz C, Leya T (2010) Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243:73–86. https://doi.org/10.1007/s00709-010-0123-y

    Article  PubMed  Google Scholar 

  58. Remias D (2012) Cell structure and physiology of alpine snow and ice algae. In: Lütz C (ed) Plants in Alpine Regions. Springer-Verlag, Vienna, pp 175–185

  59. Jewson DH, Granin NG (2015) Cyclical size change and population dynamics of a planktonic diatom, Aulacoseira baicalensis, in Lake Baikal. Eur. J. Phycol. 50:1–19. https://doi.org/10.1080/09670262.2014.979450

    Article  CAS  Google Scholar 

  60. Vehmaa A, Salonen K (2009) Development of phytoplankton in Lake Pääjärvi (Finland) during under-ice convective mixing period. Aquat. Ecol. 43:693–705. https://doi.org/10.1007/s10452-009-9273-4

    Article  CAS  Google Scholar 

  61. Bondarenko NA, Timoshkin OA, Röpstorf P, Melnik NG (2006) The under-ice and bottom periods in the life cycle of Aulacoseira baicalensis (K. Meyer) Simonsen, a principal Lake Baikal alga. Hydrobiologia 568:107–109. https://doi.org/10.1007/s10750-006-0325-7

    Article  Google Scholar 

  62. Jewson DH, Granin NG, Zhdarnov AA, Gorbunova LA, Gnatovsky RY (2010) Vertical mixing, size change and resting stage formation of the planktonic diatom Aulacoseira baicalensis. Eur. J. Phycol. 45:354–364. https://doi.org/10.1080/09670262.2010.492915

    Article  Google Scholar 

  63. Elster J, Degma P, Kováčik L, Valentová L, Šramková K, Batista Pereira A (2008) Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from the Antarctic, Arctic and Slovakia. Biologia 63:843–851. https://doi.org/10.2478/s11756-008-0111-2

  64. Karsten U, Lütz C, Holzinger A (2010) Ecophysiological performance of the aeroterrestrial green alga Klebsormidium crenulatum (Klebsormidiophyceae, Streptophyta) isolated from an alpine soil crust with an emphasis on desiccation stress. J. Phycol. 46:1187–1197. https://doi.org/10.1111/j.1529-8817.2010.00921.x

    Article  Google Scholar 

  65. Sheath RG, Vis ML, Hambrook JA, Cole KM (1996) Tundra stream macroalgae of North America: composition, distribution and physiological adaptations. Hydrobiologia 336:67–82. https://doi.org/10.1007/BF00010820

    Article  Google Scholar 

  66. Sutherland JM, Herdman M, Stewart WDP (1979) Akinetes of the cyanobacterium Nostoc PCC 7524: macromolecular composition, structure and control of differentiation. J. Gen. Microbiol. 115:273–287. https://doi.org/10.1099/00221287-115-2-273

    Article  Google Scholar 

  67. Šabacká M, Elster J (2006) Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress. Polar Biol. 30:31–37. https://doi.org/10.1007/s00300-006-0156-z

    Article  Google Scholar 

  68. Hawes I, Howard-Williams C, Vincent WF (1992) Desiccation and recovery of Antarctic cyanobacterial mats. Polar Biol. 12:587–594. https://doi.org/10.1007/BF00236981

    Article  Google Scholar 

  69. Souffreau C, Vanormelingen P, Verleyen E, Sabbe K, Vyverman W (2010) Tolerance of benthic diatoms from temperate aquatic and terrestrial habitats to experimental desiccation and temperature stress. Phycologia 49:309–324. https://doi.org/10.2216/09-30.1

    Article  Google Scholar 

  70. Hejduková E, Pinseel E, Vanormelingen P, Nedbalová L, Elster J, Vyverman W, Sabbe K (2019) Tolerance of pennate diatoms (Bacillariophyceae) to experimental freezing: comparison of polar and temperate strains. Phycologia 58:1–11. https://doi.org/10.1080/00318884.2019.1591835

    Article  Google Scholar 

  71. Mock T, Valentin K (2004) Photosynthesis and cold acclimation: molecular evidence from a polar diatom. J. Phycol. 40:732–741. https://doi.org/10.1111/j.1529-8817.2004.03224.x

    Article  CAS  Google Scholar 

  72. Olofsson M, Lamela T, Nilsson E, Bergé JP, del Pino V, Uronen P, Legrand C (2012) Seasonal variation of lipids and fatty acids of the microalgae Nannochloropsis oculata grown in outdoor large-scale photobioreactors. Energies 5:1577–1592. https://doi.org/10.3390/en5051577

    Article  CAS  Google Scholar 

  73. Antoniades D, Douglas MSV (2002) Characterization of high arctic stream diatom assemblages from Cornwallis Island, Nunavut, Canada. Can. J. Bot. 80:50–58. https://doi.org/10.1139/b01-133

    Article  Google Scholar 

  74. Pla-Rabés S, Hamilton PB, Ballesteros E, Gavrilo M, Friedlander AM, Sala E (2016) The structure and diversity of freshwater diatom assemblages from Franz Josef Land archipelago: a northern outpost for freshwater diatoms. PeerJ 2016:1–22. https://doi.org/10.7717/peerj.1705

    Article  CAS  Google Scholar 

  75. Passy SI (2007) Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquat. Bot. 86:171–178. https://doi.org/10.1016/j.aquabot.2006.09.018

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Czech Arctic Scientific Infrastructure of the University of South Bohemia, Josef Svoboda Station, Svalbard (CzechPolar2 Project LM2015078 supported by the Ministry of Education, Youth and Sports of the Czech Republic), and the institutional long-term research plan RVO67985939 of the Institute of Botany of the Czech Academy of Sciences. Eveline Pinseel and Bart Van de Vijver are acknowledged for identification of diatoms and Jana Duchoslavová for a statistical help. The authors wish to thank Paul Hamilton and three anonymous reviewers for their constructive comments on an earlier version of the manuscript.

Funding

The research was supported by the Grant Agency of Charles University (project no. 20217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Hejduková.

Electronic Supplementary Material

ESM 1

(DOCX 92.0 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hejduková, E., Elster, J. & Nedbalová, L. Annual Cycle of Freshwater Diatoms in the High Arctic Revealed by Multiparameter Fluorescent Staining. Microb Ecol 80, 559–572 (2020). https://doi.org/10.1007/s00248-020-01521-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01521-w

Keywords

Navigation