Skip to main content
Log in

Effects, interactions, and localization of Rickettsia and Wolbachia in the house fly parasitoid, Spalangia endius

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Many insect species harbor facultative microbial symbionts that affect their biology in diverse ways. Here, we studied the effects, interactions, and localization of two bacterial symbionts—Wolbachia and Rickettsia—in the parasitoid Spalangia endius. We crossed between four S. endius colonies—Wolbachia only (W), Rickettsia only (R), both (WR), and none (aposymbiotic, APS) (16 possible crosses) and found that Wolbachia induces incomplete cytoplasmic incompatibility (CI), both when the males are W or WR. Rickettsia did not cause reproductive manipulations and did not rescue the Wolbachia-induced CI. However, when R females were crossed with W or WR males, significantly less offspring were produced compared with that of control crosses. In non-CI crosses, the presence of Wolbachia in males caused a significant reduction in offspring numbers. Females’ developmental time was significantly prolonged in the R colony, with adults starting to emerge one day later than the other colonies. Other fitness parameters did not differ significantly between the colonies. Using fluorescence in situ hybridization microscopy in females, we found that Wolbachia is localized alongside Rickettsia inside oocytes, follicle cells, and nurse cells in the ovaries. However, Rickettsia is distributed also in muscle cells all over the body, in ganglia, and even in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34. https://doi.org/10.1146/annurev-ento-010814-020822

  2. Hurst GDD, Frost CL (2015) Reproductive parasitism: maternally inherited symbionts in a biparental world. Cold Spring Harb Perspect Biol 7:a017699. https://doi.org/10.1101/cshperspect.a017699

  3. Drew GC, Frost CL, Hurst GD (2019) Reproductive parasitism and positive fitness effects of heritable microbes. eLS. John Wiley & Sons, Ltd, Chichester, pp 1–8

  4. Oliver KM, Martinez AJ (2014) How resident microbes modulate ecologically-important traits of insects. Curr Opin Insect Sci 4:1–7. https://doi.org/10.1016/j.cois.2014.08.001

    Article  PubMed  Google Scholar 

  5. McLean AHC, Parker BJ, Hrček J et al (2016) Insect symbionts in food webs. Philos Trans R Soc Lond B Biol Sci 371:45. https://doi.org/10.1098/rstb.2015.0325

    Article  Google Scholar 

  6. Sazama EJ, Ouellette SP, Wesner JS (2019) Bacterial endosymbionts are common among, but not necessarily within, insect species. Environ Entomol 48:127–133. https://doi.org/10.1093/ee/nvy188

  7. Correa CC, Ballard JWO (2016) Wolbachia associations with insects: winning or losing against a master manipulator. Front Ecol Evol 3:153. https://doi.org/10.3389/fevo.2015.00153

  8. Landmann F (2019) The Wolbachia Endosymbionts. Microbiol Spectr 7. https://doi.org/10.1128/microbiolspec.BAI-0018-2019

  9. Machtinger ET, Geden CJ (2018) 11. Biological control with parasitoids. In: Ecology and Control of Vector-borne diseases. 299–335

  10. Chiel E, Kuslitzky W (2016) Diversity and abundance of house fly pupal parasitoids in Israel, with first records of two Spalangia species. Environ Entomol 45:283–291. https://doi.org/10.1093/ee/nvv180

  11. Betelman K, Caspi-Fluger A, Shamir M, Chiel E (2017) Identification and characterization of bacterial symbionts in three species of filth fly parasitoids. FEMS Microbiol Ecol 93. https://doi.org/10.1093/femsec/fix107

  12. Weinert LA (2015) The diversity and phylogeny of Rickettsia. In: Morand S, Krasnov RB, Littlewood DT (eds) Parasite diversity and diversification: Evolutionary ecology meets phylogenetics1st edn. Cambridge University Press, Cambridge, pp 150–181

  13. Brown LD, Macaluso KR (2016) Rickettsia felis, an emerging flea-borne rickettsiosis. Curr Trop Med reports 3:27–39. https://doi.org/10.1007/s40475-016-0070-6

  14. Chiel E, Gottlieb Y, Zchori-Fein E et al (2007) Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bull Entomol Res 97:407–413

    Article  CAS  Google Scholar 

  15. Zytynska SE, Weisser WW (2016) The natural occurrence of secondary bacterial symbionts in aphids. Ecol Entomol 41:13–26. https://doi.org/10.1111/een.12281

    Article  Google Scholar 

  16. Goto S, Anbutsu H, Fukatsu T (2006) Asymmetrical interactions between Wolbachia and Spiroplasma endosymbionts coexisting in the same insect host. Appl Environ Microbiol 72:4805–4810. https://doi.org/10.1128/AEM.00416-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. White JA, Kelly SE, Perlman SJ, Hunter MS (2009) Cytoplasmic incompatibility in the parasitic wasp Encarsia inaron: disentangling the roles of Cardinium and Wolbachia symbionts. Heredity (Edinb) 102:483–489

    Article  CAS  Google Scholar 

  18. Vautrin E, Vavre F (2009) Interactions between vertically transmitted symbionts: cooperation or conflict? Trends Microbiol 17:95–99. https://doi.org/10.1016/j.tim.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  19. Ferrari J, Vavre F (2011) Bacterial symbionts in insects or the story of communities affecting communities. Philos Trans R Soc B Biol Sci 366:1389–1400. https://doi.org/10.1098/rstb.2010.0226

    Article  Google Scholar 

  20. Douglas AE (2016) How multi-partner endosymbioses function. Nat Rev Microbiol 14:731–743. https://doi.org/10.1038/nrmicro.2016.151

    Article  CAS  PubMed  Google Scholar 

  21. Ros VID, Breeuwer JAJ (2009) The effects of, and interactions between, Cardinium and Wolbachia in the doubly infected spider mite Bryobia sarothamni. Heredity (Edinb) 102:413–422. https://doi.org/10.1038/hdy.2009.4

    Article  CAS  Google Scholar 

  22. White JA, Kelly SE, Cockburn SN et al (2011) Endosymbiont costs and benefits in a parasitoid infected with both Wolbachia and Cardinium. Heredity (Edinb) 106:585–591. https://doi.org/10.1038/hdy.2010.89

    Article  CAS  Google Scholar 

  23. Nakamura Y, Yukuhiro F, Matsumura M, Noda H (2012) Cytoplasmic incompatibility involving Cardinium and Wolbachia in the white-backed planthopper Sogatella furcifera (Hemiptera: Delphacidae). Appl Entomol Zool 47:273–283. https://doi.org/10.1007/s13355-012-0120-z

    Article  Google Scholar 

  24. Zhu L-Y, Zhang K-J, Zhang Y-K et al (2012) Wolbachia strengthens Cardinium-induced cytoplasmic incompatibility in the spider mite Tetranychus piercei McGregor. Curr Microbiol 65:516–523. https://doi.org/10.1007/s00284-012-0190-8

  25. Curry MM, Paliulis LV, Welch KD et al (2015) Multiple endosymbiont infections and reproductive manipulations in a linyphiid spider population. Heredity (Edinb) 115:146–152. https://doi.org/10.1038/hdy.2015.2

    Article  CAS  Google Scholar 

  26. Nguyen DT, Morrow JL, Spooner-Hart RN, Riegler M (2017) Independent cytoplasmic incompatibility induced by Cardinium and Wolbachia maintains endosymbiont coinfections in haplodiploid thrips populations. Evolution (N Y) 71:995–1008. https://doi.org/10.1111/evo.13197

    Article  CAS  Google Scholar 

  27. Oteo JA, Portillo A, Portero F et al (2014) `Candidatus Rickettsia asemboensis’ and Wolbachia spp. in Ctenocephalides felis and Pulex irritans fleas removed from dogs in Ecuador. Parasit Vectors 7:455. https://doi.org/10.1186/s13071-014-0455-0

    Article  PubMed  PubMed Central  Google Scholar 

  28. Weinert LA, Tinsley MC, Temperley M, Jiggins FM (2007) Are we underestimating the diversity and incidence of insect bacterial symbionts? A case study in ladybird beetles. Biol Lett 3:678–681. https://doi.org/10.1098/rsbl.2007.0373

    Article  PubMed  PubMed Central  Google Scholar 

  29. Toju H, Fukatsu T (2011) Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. Mol Ecol 20:853–868. https://doi.org/10.1111/j.1365-294X.2010.04980.x

    Article  PubMed  Google Scholar 

  30. Russell SL, Chappell L, Sullivan W (2019) A symbiont’s guide to the germline. Curr Top Dev Biol 135:315–351. https://doi.org/10.1016/BS.CTDB.2019.04.007

    Article  CAS  PubMed  Google Scholar 

  31. Pietri JE, DeBruhl H, Sullivan W (2016) The rich somatic life of Wolbachia. Microbiologyopen 5:923–936. https://doi.org/10.1002/mbo3.390

    Article  PubMed  PubMed Central  Google Scholar 

  32. Caspi-Fluger A, Inbar M, Mozes-Daube N et al (2011) Rickettsia ‘In’ and ‘Out’: two different localization patterns of a bacterial symbiont in the same insect species. PLoS One 6:e21096. https://doi.org/10.1371/journal.pone.0021096

  33. Skaljac M, Zanic K, Ban SG et al (2010) Co-infection and localization of secondary symbionts in two whitefly species. Bmc Microbiol 10

  34. Hurst GDD, Hammarton TC, Obrycki JJ et al (1996) Male-killing bacterium in a fifth ladybird beetle, Coleomegilla maculata (Coleoptera: Coccinellidae). Heredity (Edinb) 77:177–185. https://doi.org/10.1038/hdy.1996.122

    Article  Google Scholar 

  35. Gibson GA (2000) Illustrated key to the native and introduced chalcidoid parasitoids of filth flies in America north of Mexico. Chalcidoidea, Hymenoptera

    Google Scholar 

  36. Gibson GA (2009) Revision of new world spalangiinae (Hymenoptera: Pteromalidae). Zootaxa 2259:1–159

    Article  Google Scholar 

  37. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  38. Mediannikov O, Audoly G, Diatta G et al (2012) New Rickettsia sp. in tsetse flies from Senegal. Comp Immunol Microbiol Infect Dis 35:145–150. https://doi.org/10.1016/j.cimid.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  39. Gottlieb Y, Ghanim M, Gueguen G et al (2008) Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. Faseb J 22:2591–2599

    Article  CAS  Google Scholar 

  40. Vorburger C, Perlman SJ (2018) The role of defensive symbionts in host-parasite coevolution. Biol Rev 93:1747–1764. https://doi.org/10.1111/brv.12417

    Article  PubMed  Google Scholar 

  41. Healy SP, Brown LD, Hagstrom MR et al (2017) Effect of Rickettsia felis strain variation on infection, transmission, and fitness in the cat flea (Siphonaptera: Pulicidae). J Med Entomol 54:1037–1043. https://doi.org/10.1093/jme/tjx046

  42. Liu X-D, Guo H-F (2019) Importance of endosymbionts Wolbachia and Rickettsia in insect resistance development. Curr Opin Insect Sci 33:84–90. https://doi.org/10.1016/J.COIS.2019.05.003

    Article  PubMed  Google Scholar 

  43. Brumin M, Kontsedalov S, Ghanim M (2011) Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype. Insect Sci 18:57–66. https://doi.org/10.1111/j.1744-7917.2010.01396.x

  44. Cass BN, Himler AG, Bondy EC et al (2016) Conditional fitness benefits of the Rickettsia bacterial symbiont in an insect pest. Oecologia 180:169–179. https://doi.org/10.1007/s00442-015-3436-x

    Article  PubMed  Google Scholar 

  45. Hagimori T, Abe Y, Date S, Miura K (2006) The first finding of a Rickettsia bacterium associated with parthenogenesis induction among insects. Curr Microbiol 52:97–101. https://doi.org/10.1007/s00284-005-0092-0

  46. Gualtieri L, Nugnes F, Nappo AG et al (2017) Life inside a gall: closeness does not favour horizontal transmission of Rickettsia between a gall wasp and its parasitoid. FEMS Microbiol Ecol 93. https://doi.org/10.1093/femsec/fix087

  47. Nugnes F, Gebiola M, Monti MM et al (2015) Genetic diversity of the invasive gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) and of its Rickettsia endosymbiont, and associated sex-ratio differences. PLoS One 10:e0124660. https://doi.org/10.1371/journal.pone.0124660

  48. Snook RR, Cleland SY, Wolfner MF, Karr TL (2000) Offsetting effects of Wolbachia infection and heat shock on sperm production in Drosophila simulans: analyses of fecundity, fertility and accessory gland proteins. Genetics 155:167–178

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Champion de Crespigny FE, Wedell N (2006) Wolbachia infection reduces sperm competitive ability in an insect. Proc R Soc B Biol Sci 273:1455–1458. https://doi.org/10.1098/rspb.2006.3478

    Article  Google Scholar 

  50. Liu C, Wang J-L, Zheng Y et al (2014) Wolbachia-induced paternal defect in Drosophila is likely by interaction with the juvenile hormone pathway. Insect Biochem Mol Biol 49:49–58. https://doi.org/10.1016/J.IBMB.2014.03.014

    Article  PubMed  Google Scholar 

  51. Koehncke A, Telschow A, Werren JH, Hammerstein P (2009) Life and death of an influential passenger: Wolbachia and the evolution of CI-modifiers by their hosts. PLoS One 4:e4425. https://doi.org/10.1371/journal.pone.0004425

  52. Gillespie JJ, Driscoll TP, Verhoeve VI et al (2018) A tangled web: origins of reproductive parasitism. Genome Biol Evol 10:2292–2309. https://doi.org/10.1093/gbe/evy159

  53. Serbus LR, Casper-Lindley C, Landmann F, Sullivan W (2008) The genetics and cell biology of Wolbachia -host interactions. Annu Rev Genet 42:683–707. https://doi.org/10.1146/annurev.genet.41.110306.130354

  54. Küchler SM, Kehl S, Dettner K (2009) Characterization and localization of Rickettsia sp. in water beetles of genus Deronectes (Coleoptera: Dytiscidae). FEMS Microbiol Ecol 68:201–211. https://doi.org/10.1111/j.1574-6941.2009.00665.x

    Article  CAS  PubMed  Google Scholar 

  55. Hurst GDD, Walker LE, Majerus MEN (1996) Bacterial infections of hemocytes associated with the maternally inherited male-killing trait in British populations of the two spot ladybird, Adalia bipunctata. J Invertebr Pathol 68:286–292. https://doi.org/10.1006/jipa.1996.0098

    Article  CAS  PubMed  Google Scholar 

  56. Chiel E, Zchori-Fein E, Inbar M et al (2009) Almost there: Transmission routes of bacterial symbionts between trophic levels. PLoS One 4. https://doi.org/10.1371/journal.pone.0004767

Download references

Acknowledgments

We thank Avi Bar Massada for statistical advice and Maya Lapid for the graphical assistance.

Funding

The study was supported by the Israel Science Foundation, grant number 435/18 to Elad Chiel, and by a Consolidator Grant of the European Research Council (ERC CoG 819585 “SYMBeetle”) to Martin Kaltenpoth.

Author information

Authors and Affiliations

Authors

Contributions

All authors prepared and collected data. Data analysis was done by Benjamin Weiss, Martin Kaltenpoth, and Elad Chiel. The first draft of the manuscript was written by Elad Chiel, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elad Chiel.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

ESM 1

(PDF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semiatizki, A., Weiss, B., Bagim, S. et al. Effects, interactions, and localization of Rickettsia and Wolbachia in the house fly parasitoid, Spalangia endius. Microb Ecol 80, 718–728 (2020). https://doi.org/10.1007/s00248-020-01520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01520-x

Keywords

Navigation