Skip to main content
Log in

Silk Fibroin/Poly (vinyl alcohol) Hydrogel Cross-Linked with Dialdehyde Starch for Wound Dressing Applications

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Silk fibroin (SF) with the anti-bacterial property can be used in many fields including medical applications. However, the preparation of SF into a desired form is difficult due to its brittleness and compatibility. The purpose of this study was to prepare and characterize hydrogel containing SF and poly(vinyl alcohol) (PVA) crosslinked with dialdehyde starch (DAS) without the need for a conventional chemical crosslinker. The compatibility of SF and PVA, the gel fraction, and the swelling ratio of the SF:PVA hydrogel were improved when crosslinked with DAS. Moreover, the addition of DAS affected the porosity and the water vapor transmission rate (WVTR) of the hydrogel. The optimal ratio for preparation of the hydrogel was 50:50 SF:PVA with 5 wt% DAS, which exhibited a high gel fraction of 98 % and a 245-fold gel swelling compared with that of the dried hydrogel. The consequent loss of weight suggested the stability of hydrogel in water. The WVTR of the hydrogel was 2280±114 g·m−2·day−1 close to the range suitable for maintaining the appropriate fluid balance in the wound bed for wound healing without risking wound dehydration. The hydrogel improvement properties propose the potential to expanding the applications of SF:PVA hydrogels as wound dressing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.-C. Catoira, L. Fusaro, D.-D. Francesco, M. Ramella, and F. Boccafoschi, J. Mater. Sci. Mater. Med., 30, 115 (2019).

    PubMed  PubMed Central  Google Scholar 

  2. F. Fua, Z. Chena, Z. Zhaoa, H. Wanga, L. Shanga, Z. Gua, and Y. Zhao, Adv. Mater., 31, 1902825 (2019).

    Google Scholar 

  3. Q. Chai, Y. Jiao, and X. Yu, Gels, 6, 3 (2017).

    Google Scholar 

  4. G. Madhumitha, J. Fowsiya, and S.-M. Roopan, in Emerging Technology in Medical Applications of Hydrogel, Springer, Singapore, 2018, pp 196–218.

    Google Scholar 

  5. A. Jayakumar, V.-K. Jose, and J.-M. Lee, Small Methods, 4, 1900735 (2020).

    CAS  Google Scholar 

  6. F. Croisier and C. Jérôme, Eur. Polym. J., 49, 780 (2013).

    CAS  Google Scholar 

  7. D.-L. Kaplan, in Introduction to Biopolymers from Renewable Resources, Spinger, New York, 1998, pp 1–29.

    Google Scholar 

  8. A.-H. Bhat, I. Khan, M.-A. Usmani, R. Umapathi, and S.-M.-Z.-Al. Kindy, Int. J. Biol. Macromol., 129, 750 (2019).

    CAS  PubMed  Google Scholar 

  9. S.-K. Singh, Int. J. Biol. Macromol., 132, 265 (2019).

    CAS  PubMed  Google Scholar 

  10. N.-B. Song, W.-S. Jo, H.-Y. Song, K.-S. Chung, M. Won, and K.-B. Song, Food Hydrocoll., 31, 340 (2013).

    CAS  Google Scholar 

  11. N. Minoura, S. Aiba, M. Higuchi, Y. Gotoh, M. Tsukada, and Y. Imai, Biochem. Biophys. Res. Commun., 208, 511 (1995).

    CAS  PubMed  Google Scholar 

  12. N. Minoura, M. Tsukada, and M. Nagura, Polymer, 31, 265 (1990).

    CAS  Google Scholar 

  13. M. Santin, A. Motta, G. Freddi, and M. Cannas, J. Biomed. Mater. Res., 46, 382 (1999).

    CAS  PubMed  Google Scholar 

  14. E.-S. Gil, B. Panilaitis, E. Bellas, and D.-L. Kaplan, Adv. Healthc. Mater., 2, 206 (2013).

    CAS  PubMed  Google Scholar 

  15. W. Zhang, L. Chen, J. Chen, L. Wang, X. Gui, J. Ran, G. Xu, H. Zhao, M. Zeng, J. Ji, L. Qian, J. Zhou, H. Ouyang, and X. Zou, Adv. Healthc. Mater., 6, 1 (2017).

    Google Scholar 

  16. C. Vepari and D.-L. Kaplan, Prog. Polym. Sci., 32, 991 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. H. Nosrati, S. Pourmotabed, and E. Sharifi, J. Appl. Biotechnol. Rep., 5, 81 (2018).

    CAS  Google Scholar 

  18. Y. Dou, B. Zhang, M. He, G. Yin, Y. Cui, and I.-N. Savina, Polymers, 7, 580 (2015).

    CAS  Google Scholar 

  19. T. Tanaka, T. Tanigami, and K. Yamaura, Polym. Int., 45, 175 (1998).

    CAS  Google Scholar 

  20. P.-M.-A. Alves, R.-A. Carvalho, I.-C.-F. Moraes, C.-G. Luciano, A.-M.-Q.-B. Bittante, and P.-J.-A. Sobral, Food Hydrocoll., 25, 1751 (2011).

    CAS  Google Scholar 

  21. K.-C.-S. Figueiredo, T.-L.-M. Alves, and C.-P. Borges, J. Appl. Polym. Sci., 111, 3074 (2009).

    CAS  Google Scholar 

  22. J.-W. Rhim, A. Gennadios, C.-L. Weller, C. Cezeirat, and M.-A. Hanna, Ind. Crop. Prod., 8, 195 (1998).

    CAS  Google Scholar 

  23. Y. Zuo, W. Liu, J. Xiao, X. Zhao, Y. Zhu, and Y. Wu, Int. J. Biol. Macromol., 103, 1257 (2017).

    CAS  PubMed  Google Scholar 

  24. N. Parris and D.-R. Coffin, J. Agric. Food Chem., 45, 1596 (1997).

    CAS  Google Scholar 

  25. J.-W. Rhim, A. Gennadios, A. Handa, C.-L. Weller, and M.-A. Hanna, J. Agric. Food Chem., 48, 4937 (2000).

    CAS  PubMed  Google Scholar 

  26. Z. Ustunol and B. Mert, J. Food Sci., 69, 129 (2004).

    Google Scholar 

  27. F. Langmaler, P. Mokrejs, K. Kolomamik, and M. Mladek, J. Waste Manage., 28, 549 (2008).

    Google Scholar 

  28. P. Mokrejs, F. Langmaier, D. Janacova, M. Mladek, K. Kolomaznik, and V. Vasek, J. Therm. Anal. Calorim., 98, 299 (2009).

    CAS  Google Scholar 

  29. P. Moonsri, R. Watanesk, S. Watanesk, H. Niamsup, and R. L. Deming, J. Appl. Polym. Sci., 108, 1402 (2008).

    CAS  Google Scholar 

  30. X. Yang, Q. Liu, X. Chen, F. Yu, and Z. Zhu, Carbohydr. Polym., 73, 401 (2008).

    CAS  Google Scholar 

  31. S. Jarinya, N. Sumonman, P. Nophawan, and S. Anuvat, AAPS Pharm SciTech, 13, 1407 (2012).

    Google Scholar 

  32. N. Bhardwaj and S.-C. Kundu, Carbohydr. Polym., 85, 325 (2011).

    CAS  Google Scholar 

  33. B. Balakrishnana, M. Mohantyb, P.-R. Umashankarc, and A. Jayakrishnan, Biomaterials, 26, 6335 (2005).

    Google Scholar 

  34. Y. Dou, B. Zhang, M. He, G. Yin, and Y. Cui, J. Macromol. Sci. A, 51, 1009 (2014).

    CAS  Google Scholar 

  35. N.-J. Elizondo, P.-J.-A. Sobral, and F.-C. Menegalli, Carbohydr. Polym., 75, 592 (2009).

    CAS  Google Scholar 

  36. M.-K. Narbat, F. Orang, M.-S. Hashtjin, and A. Goudarzi, Iran. Biomed. J., 10, 215 (2006).

    CAS  Google Scholar 

  37. J.-R. Witonoa, I.-W. Noordergraaf, H.-J. Heeres, and L.-P.-B.-M. Janssen, Carbohydr. Polym., 103, 325 (2014).

    Google Scholar 

  38. E. Valles, D. Durando, I. Katime, E. Mendizabal, and J.-E. Puig, Polym. Bull., 44, 109 (2000).

    CAS  Google Scholar 

  39. H.-M.-C. Azeredo, L.-H.-C. Mattoso, D. Wood, T.-G. Williams, R.-J. Avena-Bustillos, and T.-H. McHugh, J. Food Sci., 74, 31 (2009).

    Google Scholar 

  40. L.-O. Lamke, G.-E. Nilsson, and H.-L. Reithner, Burns, 3, 159 (1977).

    Google Scholar 

  41. D. Queen, J.-D.-S. Gaylor, J.-H. Evans, J.-M. Courtney, and W.-H. Reid, Biomaterials, 8, 367 (1987).

    CAS  PubMed  Google Scholar 

  42. The European Directorate for the Quality of Medicines & HealthCare (EDQM), The International Pharmacopoeia, 9th ed., 5.8 Methods of sterilization, Geneva, World Health Organization, 2019.

  43. W.-L. Jorgensen, J. Chandrasekhar, R.-W. Impey, and M.-L.-J. Klein, Chem. Phys., 79, 926 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pusita Kuchaiyaphum.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: The authors gratefully acknowledge the Rajamangala University of Technology Isan, Nakhon Ratchasima for all the supports and liberality. Thanks to our colleagues who provided vision and knowledge that greatly assisted with the research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchaiyaphum, P., Chotichayapong, C., Butwong, N. et al. Silk Fibroin/Poly (vinyl alcohol) Hydrogel Cross-Linked with Dialdehyde Starch for Wound Dressing Applications. Macromol. Res. 28, 844–850 (2020). https://doi.org/10.1007/s13233-020-8110-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8110-4

Keywords

Navigation