Skip to main content
Log in

A facile method to synthesize magnetic nanoparticles chelated with Copper(II) for selective adsorption of bovine hemoglobin

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A novel and uncomplicated synthesis method of Cu2+-chelating with carboxyl groups that directly-modified NiFe2O4 magnetic microspheres (NiFe2O4-PAA-Cu2+) was fabricated for selective enrichment and separation of bovine hemoglobin (BHb). First, a carboxyl group directly-modified on NiFe2O4 magnetic microspheres was gained through a facile one-pot solvothermal method. Second, Cu2+ from CuSO4 was brought into use to react with carboxyl groups under mechanical stirring at room temperature. The resulting magnetic microspheres were characterized by distinct instruments that included transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM) and scanning electron microscope (SEM) to examine the size, morphology, composition and magnetization characterization. The results indicated that the NiFe2O4-PAA-Cu2+ microspheres exhibited good saturation magnetization (36.686 emu g−1), which can facilitate magnetic separation under the help of an outside magnetic field. Also, good dispersion and high adsorption ability to BHb (783.53mg g−1) can be applied to selective enrichment for bovine hemoglobin and used for selective sorption of BHb protein in bovine blood samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Z. Zhai and X. X. Zhang, Asian J. Chem., 20, 5060 (2008).

    CAS  Google Scholar 

  2. B. H. Wang and Q. Shao, New J. Chem., 41, 5651 (2017).

    Article  CAS  Google Scholar 

  3. D. J. Graves, Trends Biotechnol., 17, 127 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Y. Q. Wang and H. M. Zhang, Int. J. Biol. Macromol., 41, 243 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Y. J. Liu and Y. Z. Wang, Anal. Chim. Acta, 936, 168 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. D. Y. Li and Y. Z. Wang, J. Mater. Chem. B, 2, 5659 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. K. K. R. Tetala and K. Skrzypek, Sep. Purif. Technol., 115, 20 (2013).

    Article  CAS  Google Scholar 

  8. J. D. Wang and S. Y. Tan, Talanta, 190, 210 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. C. Din and X. D. Ma, J. Chromatogr. A, 1424, 18 (2015).

    Article  CAS  Google Scholar 

  10. B. S. Liu and X. N. Yang, Luminescence, 29, 211 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Z. Y. Guo and Y. Zhang, ACS Appl. Mater. Interfaces, 8, 29734 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. G. E. Wuenschell, E. Naranjo and F. H. Arnold, Bioprocess Eng., 5, 199 (1990).

    Article  CAS  Google Scholar 

  13. Y. Zhang and L. G. Xing, ACS Appl. Mater. Interfaces, 7, 5116 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Q. Zhai and X. Zhang, Asian J. Chem., 20, 5060 (2008).

    CAS  Google Scholar 

  15. P. Q. Mu and D. R. Feng, J. Biochem., 150, 491 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. J. J. Wang and R. Zhang, Talanta, 176, 308 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. K. F. Du and X. H. Liu, ACS Sustainable Chem. Eng., 6, 11578 (2018).

    Article  CAS  Google Scholar 

  18. Ç. Kip and R. B. Tosunb, Talanta, 200, 100 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Z. Y. Guo and Y. Zhang, ACS Appl. Mater. Interfaces, 8, 29734 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Y. Zhang and L. G. Xing, ACS Appl. Mater. Interfaces, 7, 5116 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. T. Y. Guo and Y. Q. Xia, Biomaterials, 25, 5905 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. X. P. Jia and M. L. Xu, Analyst, 138, 651 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. X. W. Kan and Q. Zhao, J. Phys. Chem. B, 114, 3999 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. X. D. Yang and M. Zhang, Appl. Surf. Sci., 439, 128 (2018).

    Article  CAS  Google Scholar 

  25. M. Zhang and X. W. He, Nanotechnology, 22, 065705 (2011).

    Article  PubMed  CAS  Google Scholar 

  26. M. Zhang and X. W. He, J. Mater. Chem., 20, 10696 (2010).

    Article  CAS  Google Scholar 

  27. H. Zhang and W. W. Wang, New J. Chem., 42, 3990 (2018).

    Article  CAS  Google Scholar 

  28. J. N. Zheng and Z. Lin, J. Mater. Chem. B., 2, 6207 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Y. W. Zhang and M. Zhang, J. Alloys Compd., 695, 3256 (2017).

    Article  CAS  Google Scholar 

  30. J. N. Zheng and Z. Lin, J. Mater. Chem. B., 3, 2185 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. B. Gómez and S. Rubio, Anal. Chem., 81, 9012 (2009).

    Article  CAS  Google Scholar 

  32. H. Deng, X. Li and Q. Peng, Angew. Chem., 117, 2842 (2005).

    Article  Google Scholar 

  33. Y. Deng and C. Deng, Adv. Mater., 21, 1377 (2009).

    Article  CAS  Google Scholar 

  34. M. S. Niasari and F. Davar, Polyhedron, 28, 1455 (2009).

    Article  CAS  Google Scholar 

  35. Y. Z. Hua and C. F. Zhaoa, Chem. Eng. J., 349, 347 (2018).

    Article  CAS  Google Scholar 

  36. S. Z. Mirahmadi-Zare and A. Allafchian, Protein Expression and Purification, 121, 52 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. J. H. Li and M. J. Chen, Colloids Surf. B: Biointerfaces, 146, 468 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. W. Wan and Q. L. Liang, Analyst, 141, 4568 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. A. H. Lu and E. L. Salabas, Angew. Chem. Int. Ed., 46, 1222 (2007).

    Article  CAS  Google Scholar 

  40. M. Faraji and Y. Yamini, Chem. Soc., 7, 1 (2010).

    CAS  Google Scholar 

  41. K. Salimi and D. D. Usta, RSC Adv., 7, 8718 (2017).

    Article  CAS  Google Scholar 

  42. M. Zhao and C. H. Deng, Chem. Commun., 50, 6228 (2014).

    Article  CAS  Google Scholar 

  43. X. Yao and X. D. Ma, RSC Adv., 7, 29330 (2017).

    Article  CAS  Google Scholar 

  44. M. Zhang and Y. T. Wang, Appl. Surf. Sci., 375, 154 (2016).

    Article  CAS  Google Scholar 

  45. H. Block and B. Maertens, Methods Enzymol., 463, 440 (2009).

    Google Scholar 

  46. S. Maensiri and C. Masingboon, Scripta Mater., 56, 797 (2007).

    Article  CAS  Google Scholar 

  47. P. Sivakumar and R. Ramesh, Mater. Res. Bullet., 46, 2204 (2011).

    Article  CAS  Google Scholar 

  48. Y. L. Cheng and Y. Zhao, J. Colloid Interface Sci., 344, 321 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. U. Kurtana and H. Güngüneş, Ceram. Int., 42, 7987 (2016).

    Article  CAS  Google Scholar 

  50. Q. Yue and J. L. Li, J. Am. Chem. Soc., 137, 13282 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. F. Rouquerol and J. Rouquerol, Adsorption by powders and porous solids: principles, methodology and applications, 2nd Ed., Elsevier, Amsterdam, 11 (2014).

  52. Y. Zhang and Z. Y. Guo, Carbon, 122, 194 (2017).

    Article  CAS  Google Scholar 

  53. L. Satyanarayana and K. M. Reddy, Mater. Chem. Phys., 82, 21 (2003).

    Article  CAS  Google Scholar 

  54. J. Liu and Y. Z. Bin, J. Phys. Chem. C, 116, 134 (2012).

    Article  CAS  Google Scholar 

  55. G. Q. Jian and Y. X. Liu, Nanoscale, 4, 6336 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. R. X. Gao and X. H. Cui, Talanta, 150, 46 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Y. J. Liu and Y. Z. Wang, Anal. Chim. Acta, 936, 168 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. M. Zhang and D. Cheng, Asian J., 5, 1332 (2010).

    CAS  Google Scholar 

  59. R. X. Gao and X. R. Mu, J. Mater. Chem. B., 2, 1733 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. J. D. Wang and H. Y. Guan, ACS Biomater. Sci. Eng., 5, 2740 (2019).

    Article  CAS  Google Scholar 

  61. E. B. Altıntas and D. Türkmen, Colloids Surf. B: Biointerfaces, 85, 235 (2011).

    Article  PubMed  CAS  Google Scholar 

  62. Y. Zhang and L. G. Xing, ACS Appl. Mater. Interfaces, 7, 5116 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. L. Shi and Y. H. Tang, J. Sep. Sci., 39, 2876 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (21575076 and 21621003), the National Key Research and Development Program of China (2016YFA0203101), and the Beijing Municipality Science and Technology Program (D161100002116001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qionglin Liang or Mingyu Ding.

Supporting Information

11814_2020_532_MOESM1_ESM.pdf

A facile method to synthesize magnetic nanoparticles chelated with Copper(II) for selective adsorption of bovine hemoglobin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, H., Wang, J., Tan, S. et al. A facile method to synthesize magnetic nanoparticles chelated with Copper(II) for selective adsorption of bovine hemoglobin. Korean J. Chem. Eng. 37, 1097–1106 (2020). https://doi.org/10.1007/s11814-020-0532-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0532-3

Keywords

Navigation