Skip to main content
Log in

Intrinsically microporous oligomers as organic porogens for mixed-matrix membranes

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Intrinsically microporous oligomers (or oligomers of intrinsic microporosity, OIM) for use as organic poro-gens were first synthesized and subsequently incorporated into polysulfone (PSU) matrices to produce mixed-matrix membranes (MMMs) for gas separation. Their molecular weight was controlled to be about Mn=2,800 (n~5–6), and their end groups were regulated to be either -OH (OH-OIM) or -F (F-OIM) for improvement in the compatibility between OIM and PSU. The intrinsic pores of OIM greatly increase the gas permeability of PSU with only a small loss of gas selectivity. For instance, 20/80 wt% OH-OIM/PSU MMMs yield up to three- to four-fold higher permeability of CO2 and He compared to neat PSU, mostly associated with the intrinsic pores of OIM and its high compatibility with PSU. Additionally, very little reduction in separation performance was observed over 100 days. This suggests OIM as a promising organic porogen of MMMs for improving gas separation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker and B. D. Freeman, Macromolecules, 50, 7809 (2017).

    Article  CAS  Google Scholar 

  2. B. D. Freeman, Macromolecules, 32, 375 (1999).

    Article  CAS  Google Scholar 

  3. Q. Shen, S. Cong, R. He, Z. Wang, Y. Jin, H. Li, X. Cao, J. Wang, B. V. D. Bruggen and Y. Zhang, J. Membr. Sci., 588, 117201 (2019).

    Article  CAS  Google Scholar 

  4. T. T. Moore and W. J. Koros, J. Mol. Struct., 739, 87 (2005).

    Article  CAS  Google Scholar 

  5. H. V. Thang and S. Kaliaguine, Chem. Rev., 113, 4980 (2013).

    Article  Google Scholar 

  6. T. C. Merkel, B. D. Freeman, R. J. Spontak, Z. He, I. Pinnau, P. Meakin and A. J. Hill, Science, 296, 519 (2002).

    Article  CAS  Google Scholar 

  7. J. Ahn, W.-J. Chung, I. Pinnau, J. Song, N. Du, G. P. Robertson and M. D. Guiver, J. Membr. Sci., 346, 280 (2010).

    Article  CAS  Google Scholar 

  8. J. Ahn, W.-J. Chung, I. Pinnau and M. D. Guiver, J. Membr. Sci., 314, 123 (2008).

    Article  CAS  Google Scholar 

  9. M. G. Suer, N. Bac and L. Yilmaz, J. Membr. Sci., 91, 77 (1994).

    Article  Google Scholar 

  10. K. Zarshenas, A. Raisi and A. Aroujalian, J. Membr. Sci., 510, 270 (2016).

    Article  CAS  Google Scholar 

  11. E. M. Mahdi and J.-C. Tan, J. Membr. Sci., 498, 276 (2016).

    Article  CAS  Google Scholar 

  12. Y. Liu, G. Liu, C. Zhang, W. Qiu, S. Yi, V. Chernikova, Z. Chen, Y. Belmabkhout, O. Shekhah, M. Eddaoudi and W. Koros, Adv. Sci., 5, 1800982 (2018).

    Article  Google Scholar 

  13. Z. V. Singh, L.-L. Tan, M. G. Cowan, Y.-W. Yang, W. Zhang, D. L. Gin and R. D. Noble, J. Membr. Sci., 539, 224 (2017).

    Article  CAS  Google Scholar 

  14. J.D. Evans, D. M. Huang, M. R. Hill, C. J. Sumby, A. W. Thornton and C. J. Doonan, J. Phys. Chem. C, 118, 1523 (2014).

    Article  CAS  Google Scholar 

  15. H. Furukawa, K. E. Cordova, M. O’Keeffe and O. M. Yaghi, Science, 341, 1230444 (2013).

    Article  Google Scholar 

  16. J. B. Decoste, M. S. Denny Jr., G. W. Peterson, J. J. Mahle and S. M. Cohen, Chem. Sci., 7, 2711 (2016).

    Article  CAS  Google Scholar 

  17. P. J. Waller, F. Gandara and O. M. Yaghi, Acc. Chem. Res., 48, 3053 (2015).

    Article  CAS  Google Scholar 

  18. T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J. M. Simmons, S. Qiu and G. Zhu, Angew. Chem. Int. Ed., 48, 9457 (2009).

    Article  CAS  Google Scholar 

  19. G. Zhang and M. Mastalerz, Chem. Soc. Rev., 43, 1934 (2014).

    Article  CAS  Google Scholar 

  20. A. G. Slater and A. I. Cooper, Science, 29, aaa8075 (2015).

    Article  Google Scholar 

  21. T. Hasell and A. I. Cooper, Nat. Rev. Mater., 1, 16053 (2016).

    Article  CAS  Google Scholar 

  22. B. P. Biswal, H. D. Chaudhari, R. Banerjee and U. K. Kharul, Chem. Eur. J., 22, 4695 (2016).

    Article  CAS  Google Scholar 

  23. M. Shan, B. Seoane, E. Rozhko, A. Dikhtiarenko, G. Clet, F. Kapteijn and J. Gascon, Chem. Eur. J., 22, 14467 (2016).

    Article  CAS  Google Scholar 

  24. G. Zhu, F. Zhang, M. P. Rivera, X. Hu, G. Zhang, C. W. Jones and R. P. Lively, Angew. Chem., 131, 2664 (2019).

    Article  Google Scholar 

  25. R. R. Tiwari, J. Jin, B. D. Freeman and D. R. Paul, J. Membr. Sci., 537, 362 (2017).

    Article  CAS  Google Scholar 

  26. L. Hao, P. Li and T.-S Chung, J. Membr. Sci., 453, 614 (2014).

    Article  CAS  Google Scholar 

  27. W. F. Yong, F. Y. Li, Y. C. Xiao, P. Li, K. P. Pramoda, Y. W. Tong and T. S. Chung, J. Membr. Sci., 407-408, 47 (2012).

    Article  CAS  Google Scholar 

  28. U. W. Gedde, Polymer physis, Chapmann & Hall, London (1995).

    Google Scholar 

  29. A. Bondi, J. Phys. Chem., 68, 441 (1964).

    Article  CAS  Google Scholar 

  30. W. H. Carothers, T. Faraday Soc., 32, 39 (1936).

    Article  CAS  Google Scholar 

  31. J. Song, N. Du, Y. Dai, G. P. Robertson, M. D. Guiver, S. Thomas and I. Pinnau, Macromolecules, 41, 7411 (2008).

    Article  CAS  Google Scholar 

  32. K. N. Fotopoulou and H. K. Karapanagioti, Mar. Env iron. Res., 81, 70 (2012).

    Article  CAS  Google Scholar 

  33. V. Babu, S. K. Pasha, G. Gupta, C. B. Majumdar and B. Choudhury, Fiber Polym., 15, 24 (2014).

    Article  CAS  Google Scholar 

  34. R. W. Baker, Membrane technology and application, John Wiley & Sons, Ltd., New Jersey (2012).

    Book  Google Scholar 

  35. Q. Song, S. Cao, P. Z. Rivera, L. P. Lu, W. Li, Y. Ji, S. A. Al-Muhtaseb, A. K. Cheetham and E. Sivaniah, Nat. Commun., 4, 1918 (2013).

    Article  Google Scholar 

  36. L. H. Sperling, Introduction to physical polymer science, John Wiley & Sons, Ltd., New Jersey (2006).

    Google Scholar 

  37. Y. Yampolskii, I. Pinnau and B. Freeman, Materials science of membranes for gas and vapor separation, John Wiley & Sons, Ltd., New Jersey (2006).

    Book  Google Scholar 

  38. L. M. Robeson, J. Membr. Sci., 320, 390 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Center for Artificial Photosynthesis (KCAP) located in Sogang University and funded by the Ministry of Science, ICT, and Future Planning (MSIP) through the National Research Foundation of Korea (Grant No. 2009-0093883). The surface images (AFM) were analyzed on an XE-100 instrument (Psia) installed at Hanyang LINC+ Analytical Equipment Center (Seoul).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Soo Kang.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, G.H., Park, S., Park, S.C. et al. Intrinsically microporous oligomers as organic porogens for mixed-matrix membranes. Korean J. Chem. Eng. 37, 1050–1056 (2020). https://doi.org/10.1007/s11814-020-0528-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0528-z

Keywords

Navigation