Skip to main content
Log in

Surface morphologies and wetting properties of layer-by-layer assembled films of polyelectrolytes with bimodal molecular weight distribution

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Layer-by-layer (LbL) assembly has been rigorously applied to the construction of superhydrophobic surfaces. Typically, this involves generating a hierarchical porous structure which is then coated with a low surface energy compound. In this study, a porous LbL film was constructed from poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA) using a PAA solution with a bimodal molecular weight distribution. This solution was prepared by mixing two PAA solutions with different average molecular weights (100,000 and 15,000 g/mol). The mixing ratio was adjusted for fine control of the porous structure, which was induced by acid treatment at pH 2.0–2.4. Generally, surface pore structure was weakened as the 15,000 g/mol PAA ratio increased. However, the surface roughness decreased or increased as the 15,000 g/mol PAA ratio increased depending on the acid treatment pH and time. The porous LbL films were coated with fluorinated silane to make them hydrophobic. When the acid condition was pH 2.4 for 5 min, the water contact angle decreased significantly from 132° to minimum of 105° as the amount of 15,000 g/mol PAA increased. However, at pH 2.0 for 5 min, the water contact angle decreased smaller from 148° to 139° as the amount of 15,000 g/mol PAA increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Lee, M. L. Alcaraz, M. F. Rubner and R. E. Cohen, ACS Nano, 7, 2172 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Y. Lu, S. Sathasivam, J. L. Song, C. R. Crick, C. J. Carmalt and I. P. Parkin, Science, 347, 1132 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Z. Y. Y. C. Jung and B. Bhushan, J. Phys.-Condens. Matter, 22, 03514 (2010).

    Google Scholar 

  4. Z. Y. Deng, W. Wang, L. H. Mao, C. F. Wang and S. Chen, J. Mater. Chem. A, 2, 4178 (2014).

    Article  CAS  Google Scholar 

  5. T. T. Isimjan, T. Y. Wang and S. Rohani, Chem. Eng. J., 210, 182 (2012).

    Article  CAS  Google Scholar 

  6. W. B. Zhang, Y. Z. Zhu, X. Liu, D. Wang, J. Y. Li, L. Jiang and J. Jin, Angew. Chem., Int. Ed., 53, 856 (2014).

    Article  CAS  Google Scholar 

  7. B. Su, Y. Tian and L. Jiang, J. Am. Chem. Soc., 138, 1727 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Z. X. Wang, M. Elimelech and S. H. Lin, Environ. Sci. Technol., 50, 2132 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Y. F. Si and Z. G. Guo, Nanoscale, 7, 5922 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. K. S. Liu, Y. Tian and L. Jiang, Prog. Mater. Sci., 58, 503 (2013).

    Article  CAS  Google Scholar 

  11. C. H. Xue, Y. R. Li, P. Zhang, J. Z. Ma and S. T. Jia, ACS Appl. Mater. Interfaces, 6, 10153 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. S. L. Zheng, C. Li, Q. T. Fu, W. Hu, T. F. Xiang, Q. Wang, M. P. Du, X. C. Liu and Z. Chen, Mater. Des., 93, 261 (2016).

    Article  CAS  Google Scholar 

  13. M. Li, J. Zhai, H. Liu, Y. L. Song, L. Jiang and D. B. Zhu, J. Phys. Chem. B, 107, 9954 (2003).

    Article  CAS  Google Scholar 

  14. N. J. Shirtcliffe, G. McHale, M. I. Newton and C. C. Perry, Langmuir, 19, 5626 (2003).

    Article  CAS  Google Scholar 

  15. D. M. Zang, R. W. Zhu, W. Zhang, X. Q. Yu, L. Lin, X. L. Guo, M. J. Liu and L. Jiang, Adv. Funct. Mater., 27, 1605446 (2017).

    Article  CAS  Google Scholar 

  16. X. F. Wang, B. Ding, J. Y. Yu and M. R. Wang, Nano Today, 6, 510 (2011).

    Article  CAS  Google Scholar 

  17. Y. Li, L. Li and J. Q. Sun, Angew. Chem. Int. Ed., 49, 6129 (2010).

    Article  CAS  Google Scholar 

  18. X. Du, X. M. Liu, H. M. Chen and J. H. He, J. Phy. Chem. C, 113, 9063 (2009).

    Article  CAS  Google Scholar 

  19. P. S. Brown and B. Bhushan, Sci. Rep., 5, 8701 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. X. Y. Huang, J. D. Chrisman and N. S. Zacharia, ACS Macro Lett., 2, 826 (2013).

    Article  CAS  Google Scholar 

  21. X. Y. Huang and N. S. Zacharia, J. Appl. Poly. Sci., 132, 42767 (2015).

    Article  CAS  Google Scholar 

  22. T. Soeno, K. Inokuchi and S. Shiratori, Appl. Surf. Sci., 237, 543 (2004).

    Article  CAS  Google Scholar 

  23. X. J. Guo, C. H. Xue, M. Li, X. Li and J. Z. Ma, RSC Adv., 7, 25560 (2017).

    Article  CAS  Google Scholar 

  24. S. Hwangbo, J. Heo, X. Lin, M. Choi and J. Hong, Sci. Rep., 6, 19178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. L. Zhang and J. Q. Sun, Macromolecules, 43, 2413 (2010).

    Article  CAS  Google Scholar 

  26. M. C. Wu, N. An, Y. Li and J. Q. Sun, Langmuir, 32, 12361 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. J. Ji, J. H. Fu and J. C. Shen, Adv. Mater., 18, 1441 (2006).

    Article  CAS  Google Scholar 

  28. J. H. Fu, J. Ji, L. Y. Shen, A. Kueller, A. Rosenhahn, J. C. Shen and M. Grunze, Langmuir, 25, 672 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. X. K. Liu, B. Y. Dai, L. Zhou and J. Q. Sun, J. Mater. Chem., 19, 497 (2009).

    Article  CAS  Google Scholar 

  30. M. E. Buck, S. C. Schwartz and D. M. Lynn, Chem. Mater., 22, 6319 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. U. Manna, A. H. Broderick and D. M. Lynn, Adv. Mater., 24, 4291 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. J. D. Mendelsohn, C. J. Barrett, V. V. Chan, A. J. Pal, A. M. Mayes and M. F. Rubner, Langmuir, 16, 5017 (2000).

    Article  CAS  Google Scholar 

  33. J. Hiller, J. D. Mendelsohn and M. F. Rubner, Nat. Mater., 1, 59 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. C. Sung, Y. Ye and J. L. Lutkenhaus, ACS Macro Lett., 4, 353 (2015).

    Article  CAS  Google Scholar 

  35. J. L. Lutkenhaus, K. McEnnis and P. T. Hammond, Macromolecules, 41, 6047 (2008).

    Article  CAS  Google Scholar 

  36. C. Cho and N. S. Zacharia, Langmuir, 28, 841 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. K.-K. Chia, M. F. Rubner and R. E. Cohen, Langmuir, 25, 14044 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. L. Zhai, F. Ç. Cebeci, R. E. Cohen and M. F. Rubner, Nano Lett., 4, 1349 (2004).

    Article  CAS  Google Scholar 

  39. J. Yu, S. Han, J. S. Hong, O. Sanyal and I. Lee, Langmuir, 32, 8494 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. B. Sun, R. M. Flessner, E. M. Saurer, C. M. Jewell, N. J. Fredin and D. M. Lynn, J. Colloid Interface Sci., 355, 431 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. X. Chen and J. Sun, Chem.- Asian J., 9, 2063 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. P. S. Brown and B. Bhushan, J. Colloid Interface Sci., 456, 210 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. P. S. Brown and B. Bhushan, Sci. Rep., 5, 14030 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. J. Yu, B. M. Meharg and I. Lee, Polymer, 109, 297 (2017).

    Article  CAS  Google Scholar 

  45. Y. Wang, J. Knapp, A. Legere, J. Raney and L. Li, RSC Adv., 5, 30570 (2015).

    Article  CAS  Google Scholar 

  46. H. Choi and H. Liang, J. Colloid Interface Sci., 477, 176 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. H. Sawada, Y. Ikematsu, T. Kawase and Y. Hayakawa, Langmuir, 12, 3529 (1996).

    Article  CAS  Google Scholar 

  48. A. Vaidya and M. K. Chaudhury, J. Colloid Interface Sci., 249, 235 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2018R1C1B5085125). This research was also supported by Basic Science Research Capacity Enhancement Project through Korea Basic Science Institute (Core-facility for Converging Materials) grant funded by the Ministry of Education (2019R1A6C1010045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choonghyun Sung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, C., Choi, S. & Kim, J. Surface morphologies and wetting properties of layer-by-layer assembled films of polyelectrolytes with bimodal molecular weight distribution. Korean J. Chem. Eng. 37, 1266–1273 (2020). https://doi.org/10.1007/s11814-020-0545-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0545-y

Keywords

Navigation