Skip to main content
Log in

Enhanced separation performance of three-zone simulated moving bed chromatography with ModiCon strategy

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A three-zone simulated moving bed (SMB) chromatography using ModiCon strategy is proposed to enhance the separating performance. In this approach, three fold-concentrated feed and only desorbent are introduced during one-third and two-thirds of the switching time, respectively. The results showed that if the concentrated feed is introduced during the first and the last subsection of switching time, purity of extract and raffinate are improved, respectively, while recovery and other performance indices (i.e., solvent consumption and ratio of desorbent/feed) are slightly decreased. On the other hand, introduction of concentrated feed during the middle subsection of switching time results in an increase of both raffinate and extract purity, as well as the recovery yield. Other performance indices were comparable to those of three-zone SMB without ModiCon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Miller, C. Grill, T. Yan, O. Dapremont, E. Huthmann and M. Juza, J. Chromatogr. A, 1006, 267 (2003).

    Article  CAS  Google Scholar 

  2. D. B. Broughton and C. G. Gerhold, U. S. Patent, 2,985,589 (1961).

    Google Scholar 

  3. D. B. Broughton, Chem. Eng. Prog., 66, 70 (1970).

    CAS  Google Scholar 

  4. P. Sá Gomes and A. E. Rodrigues, Chem. Eng. Technol., 35, 17 (2012).

    Article  Google Scholar 

  5. R. P. V. Faria and A. E. Rodrigues, J. Chromatogr. A, 1421, 82 (2015).

    Article  CAS  Google Scholar 

  6. K. Hashimoto, M. Yamada, S. Adachi and Y. Shirai, J. Chem. Eng. Jpn., 22, 432 (1989).

    Article  CAS  Google Scholar 

  7. Y. Zang and P. C. Wankat, Ind. Eng. Chem. Res., 41, 5283 (2002).

    Article  CAS  Google Scholar 

  8. C. Y. Chin and N. H. L. Wang, Sep. Purif. Rev., 33, 77 (2004).

    Article  CAS  Google Scholar 

  9. O. Ludemann-Hombourger, R. M. Nicoud and M. Bailly, Sep. Sci. Technol., 35, 1829 (2000).

    Article  CAS  Google Scholar 

  10. O. Ludemann-Hombourger, G. Pigorini, R. M. Nicoud, D. S. Ross and G. Terfloth, J. Chromatogr. A, 947, 59 (2002).

    Article  CAS  Google Scholar 

  11. Y. Zang and P. C. Wankat, Ind. Eng. Chem. Res., 41, 5283 (2002).

    Article  CAS  Google Scholar 

  12. Z. Zhang, M. Mazzotti and M. Morbidelli, J. Chromatogr. A, 1006, 87 (2003).

    Article  CAS  Google Scholar 

  13. Z. Zhang, M. Morbidelli and M. Mazzotti, AIChE J., 50, 625 (2004).

    Article  CAS  Google Scholar 

  14. H. Schramm, A. Kienle, M. Kaspereit and A. Seidel-Morgenstern, Chem. Eng. Sci., 58, 5217 (2003).

    Article  CAS  Google Scholar 

  15. H. Schramm, M. Kaspereit, A. Kienle and A. Seidel-Morgenstern, J. Chromatogr. A, 1006, 77 (2003).

    Article  CAS  Google Scholar 

  16. Y. Yu, K. R. Wood and Y. A. Liu, Ind. Eng. Chem. Res., 54, 11576 (2015).

    Article  CAS  Google Scholar 

  17. Z. Zhang, M. Mazzotti and M. Morbidelli, Korean J. Chem. Eng., 21, 454 (2004).

    Article  CAS  Google Scholar 

  18. S. Mun, J. Chromatogr. A, 1341, 8 (2014).

    Article  CAS  Google Scholar 

  19. P. Tangpromphan, H. Budman and A. Jaree, Chem. Eng. Process.-Process Intensification, 126, 23 (2018).

    Article  CAS  Google Scholar 

  20. B. Shen, M. Chen, H. Jiang, Y. Zhao and F. Wei, Sep. Sci. Technol., 46, 695 (2011).

    Article  CAS  Google Scholar 

  21. H.-G. Nam, C. Park, S.-H. Jo, Y.-W. Suh and S. Mun, Process Biochem., 47, 2418 (2012).

    Article  CAS  Google Scholar 

  22. G. Storti, M. Mazzotti, M. Morbidelli and S. Carrà, AIChE J., 39, 471 (1993).

    Article  CAS  Google Scholar 

  23. I. M. Aroso, R. Craveiro, Â. Rocha, M. Dionísio, S. Barreiros, R. L. Reis, A. Paiva and A. R. C. Duarte, Int. J. Pharm., 492, 73 (2015).

    Article  CAS  Google Scholar 

  24. E. J. Wilson and C. J. Geankoplis, Ind. Eng. Chem. Fundam., 5, 9 (1966).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2016R1A2B2014099).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ngoc Lan Mai or Yoon-Mo Koo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, S., Song, JR., Mai, N.L. et al. Enhanced separation performance of three-zone simulated moving bed chromatography with ModiCon strategy. Korean J. Chem. Eng. 37, 1057–1065 (2020). https://doi.org/10.1007/s11814-020-0529-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0529-y

Keywords

Navigation