Skip to main content
Log in

Photocatalytic degradation of methylene blue using three-dimensional porous graphene-titania microparticles under UV light

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Porous graphene and graphene-silica microparticles containing titania nanoparticles were synthesized by emulsion-assisted self-assembly for the photocatalytic decomposition of methylene blue in an aqueous medium. After the mixed dispersion of graphene nanosheets and titania nanoparticles with or without silicic acid was prepared, the complex fluid was emulsified in a continuous oil phase to form tiny droplets that act as micro-reactors for the synthesis of porous photocatalytic particles, the morphology of which was three-dimensional spherical shapes with a number of irregular-shaped macropores. The three dimensional conductive graphene scaffolds greatly enhanced the photocatalytic activity of the porous particles due to the suppression of the recombination of electron-hole pairs generated from titania under UV light irradiation, and adsorption of dye molecules on graphene-silica scaffolds caused rapid removal of aqueous contaminants. Unlike previous reports, the kinetics of the photocatalytic decomposition reaction could not be explained by Langmuir-Hinshelwood kinetics, but the experimental data could be fitted well by the second- or third-order kinetics. This indicates that the removal rate of the pollutant could be enhanced by the supporting material. The removal efficiency of methylene blue was estimated as more than 95% when sufficient amount of the photocatalytic particles was used, implying that application to water treatment process will be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Ould-Chikh, S. Pavan, A. Fecant, E. Trela, C. Verdon, A. Gallard, N. Crozet., J.-L. Loubet, M. Hemati and L. Rouleau, Stud. Surf. Sci. Catal., 175, 193 (2010).

    Article  CAS  Google Scholar 

  2. S. Ciampi, T. Böcking, K. A. Kilian, J. B. Harper and J. J. J. Gooding, Langmuir, 24(11), 5888 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. C.-F. Wang and L.-T. Chen, Langmuir, 33(8), 1969 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. L. Ernawati, T. Ogi, R. Balgis, K. Okuyama, M. Stucki, S.C. Hess and W. J. Stark, Langmuir, 32(1), 338 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Y.-S. Cho, I.-A. Oh and N. R. Jung, J. Ceram. Processing Res., 17(6), 573 (2016).

    Google Scholar 

  6. C. M. Wu and M. H. Chou, Eur. Polym. J., 82, 35 (2016).

    Article  CAS  Google Scholar 

  7. L. Passoni, L. Criante, F. Fumagalli, F. Scotognella, G. Lanzani and F. D. Fonzo, ACS Nano, 8(12), 12167 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. R. M. Dorin, H. Sai and U. Wiesner, Chem. Mater., 26(1), 339 (2014).

    Article  CAS  Google Scholar 

  9. T. Bollhorst, T. Grieb, A. Rosenauer, G. Fuller, M. Maas and K. Rezwan, Chem. Mater., 25(17), 3464 (2013).

    Article  CAS  Google Scholar 

  10. A. Fujishima and K. Honda, Nature, 238(5358), 37 (1972).

    Article  CAS  PubMed  Google Scholar 

  11. Y.-S. Cho, I.-A. Oh and N. R. Jung, J. Disper. Sci. Technol., 37, 676 (2016).

    Article  CAS  Google Scholar 

  12. D. S. Bhachu, S. Sathasivam, C. J. Carmalt and I. P. Parkin, Langmuir, 30(2), 624 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. H. Yoo, S. Kahng and J. H. Kim, Sol. Energ. Mat. Sol. C., 204, 110211 (2020).

    Article  CAS  Google Scholar 

  14. D. Bak and J. H. Kim, J. Power Sources, 389, 70 (2018).

    Article  CAS  Google Scholar 

  15. J. Fu, Q. Xu, J. Low, C. Jiang and J. Yu, Appl. Catal. B., 243, 556 (2019).

    Article  CAS  Google Scholar 

  16. T. Su, Q. Shao, Z. Qin, Z. Guo and Z. Wu, ACS Catal., 8, 2253 (2018).

    Article  CAS  Google Scholar 

  17. Q. Xu, L. Zhang, J. Yu, S. Wageh, A. A. Al-Ghamdi and M. Jaroniec, Mater. Today, 21(10), 1042 (2018).

    Article  CAS  Google Scholar 

  18. J. Low, B. Dai, T. Tong, C. Jiang and J. Yu, Adv. Mater., 31(6), 1802981 (2018).

    Article  CAS  Google Scholar 

  19. B. Lin, H. Li, H. An, W. Hao, J. Wei, Y. Dai, C. Ma and G. Yang, Appl. Catal. B, 220, 542 (2018).

    Article  CAS  Google Scholar 

  20. X. Cai, J. Zhang, M. Fujitsuka and T. Majima, Appl. Catal. B, 202, 191 (2017).

    Article  CAS  Google Scholar 

  21. Y. Horiguchi, T. Kanda, K. Torigoe, H. Sakai and M. Abe, Langmuir, 30(3), 922 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. B. Sun, A. V. Vorontsov and P. G. Smirniotis, Langmuir, 19(8), 3151 (2003).

    Article  CAS  Google Scholar 

  23. D. B. Hamal, J. A. Haggstrom, G. L. Marchin, M.A. Ikenberry, K. Hohn and K. J. Klabunde, Langmuir, 26(4), 2805 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. K. K. Paul, R. Ghosh and P. K. Giri, Nanotechnology, 27, 315703 (2016).

    Article  PubMed  CAS  Google Scholar 

  25. V. R. Posa, V. Annavaram, J. R. Koduru, P. Bobbala, V. Madhavi and A. R. Somala, J. Exp. Nanosci., 11(9), 722 (2016).

    Article  CAS  Google Scholar 

  26. K. Y. Foo and B. H. Hameed, Desalin. Water Treat., 19, 255 (2010).

    Article  CAS  Google Scholar 

  27. G. N. Shah and R. Lemilch, Ind. Eng. Chem. Fundamentals, 9(3), 350 (1970).

    Article  CAS  Google Scholar 

  28. Y.-S. Cho, N. Ku and Y.-S. Kim, J. Chem. Eng. Jpn., 52(2), 194 (2019).

    Article  CAS  Google Scholar 

  29. Y.-S. Cho and S. H. Roh, J. Disper. Sci. Technol., 39(1), 33 (2018).

    Article  CAS  Google Scholar 

  30. H.D. Jang, S. K. Kim, H. Chang, J.-W. Choi, J. Luo and J. Huang, Aerosol Sci. Technol., 47(1), 93 (2013).

    Article  CAS  Google Scholar 

  31. S.-H. Park, H.-K. Kim, S.-B. Yoon, C.-W. Lee, D. Ahn, S.-I. Lee, K. C. Roh and K.-B. Kim, Chem. Mater., 27(2), 457 (2015).

    Article  CAS  Google Scholar 

  32. T.-F. Yeh, J. Cihlar, C.-Y. Chang, C. Cheng and H. Teng, Mater. Today, 16(3), 78 (2013).

    Article  CAS  Google Scholar 

  33. I.-A. Oh, C. H. Shin and Y.-S. Cho, Korean J. Met. Mater., 54(8), 573 (2016).

    Article  CAS  Google Scholar 

  34. Y.-S. Cho and C. H. Shin, Korean J. Chem. Eng., 34(2), 555 (2017).

    Article  CAS  Google Scholar 

  35. Y.-S. Cho, Korean J. Met. Mater., 55(4), 150 (2017).

    Google Scholar 

  36. M.-L. Chen, J.-S. Bae and W.-C. Oh, Bull. Kor. Chem. Soc., 27(9), 1423 (2006).

    Article  CAS  Google Scholar 

  37. D. Pathania, S. Sharma and P. Singh, Arab. J. Chem., 10, S1445 (2007).

  38. C. Moore, T. S. Perova, B. Kennedy, K. Berwickc, I. L. Shaganov and R. A. Moore, Proc. SPIE, 4876, 1247 (2003).

    Article  Google Scholar 

  39. M. Hema, A.Y. Arasi, P. Tailselvi and R. Anbaasan, Chem. Sci. Trans., 2(1), 239 (2013).

    Article  CAS  Google Scholar 

  40. S. Sharin, I. A. Rahman, A. F. Ahmad, H. M. K. Mohd, F. Mohamed, F. Radiman, M. S. Yasir, S. Sarmani, M. T. M. Ayob and I. S. Bastamam, Malays. J. Anal. Sci., 19(6), 1223 (2015).

    Google Scholar 

  41. M. Shaban, M. R. Abukhadra, S. S. Ibrahim and M. G. Shahien, Appl. Water Sci., 7, 4743 (2017).

    Article  CAS  Google Scholar 

  42. M. Sanchez, M. J. Rivero and I. Ortiz, Appl. Catal. B, 101, 515 (2011).

    Article  CAS  Google Scholar 

  43. H. G. Mobtaker, A. Malekinejad, T. Yousefi and H. Aghayan, J. Sci., I. R. I., 28(1), 79 (2017).

    Google Scholar 

  44. X. Wang, S.-f. Han, Q.-w. Zhang, N. Zhang and D.-d. Zhao, MATEC Web of Conferences, 238, 03006 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF- 2017R1C1B5017174), the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1A6A1A03015562), and Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P002007, The Competency Development Program for Industry Specialist).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Sang Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, YS., Lee, H.J. & Sung, S. Photocatalytic degradation of methylene blue using three-dimensional porous graphene-titania microparticles under UV light. Korean J. Chem. Eng. 37, 1071–1085 (2020). https://doi.org/10.1007/s11814-020-0512-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0512-7

Keywords

Navigation