Skip to main content
Log in

Defect-controlled Fe-N-doped carbon nanofiber by ball-milling for oxygen reduction reaction

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We demonstrate that control of the defect level on carbon materials is effective for enhancing the oxygen reduction reaction (ORR) performance of nonprecious-metal catalysts. Vapor-grown carbon nanofiber (VGCNF) with high crystallinity and high electronic conductivity was chosen as the substrate of our ORR catalysts. To induce defects on the VGCNF, it was subjected to ball-milling for various controlled times, yielding BMx-VGCNF (x represents the ball-milling time, 0-6 h). The defect level introduced on the VGCNF was effectively regulated by controlling the ball-milling time. Although the density of defect sites increased with increasing ball-milling time, the surface area was high-est in BM2-VGCNF. Nonprecious-metal ORR catalysts (BMx-Fe-VGCNF) were prepared by NH3 pyrolysis of Fe-ion-adsorbed BMx-VGCNF. The ball-milling of VGCNF was effective to introduce nitrogen onto the catalyst. In particular, the controlled ball-milling was important to generate highly active sites on the catalyst surface. Among the catalysts studied, BM2-Fe-VGCNF exhibited the best ORR performance, which was 2.5-times greater than that of BMx-Fe-VGCNF (x=4, 6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Sopian and W. R. Wan Daud, Renew. Energy, 31, 719 ((2006).

    Article  CAS  Google Scholar 

  2. H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang and D. Wilkinson, J. Power Sources, 155, 95 ((2006).

    Article  CAS  Google Scholar 

  3. N. M. Markovic, B. N. Grgur and P. N. Ross, J. Phys. Chem. B, 101, 5405 ((1997).

    Article  CAS  Google Scholar 

  4. B. C. H. Steele and A. Heinzel, Nature, 414, 345 ((2001).

    Article  Google Scholar 

  5. J. Wee, K. Lee and S. Kim, J. Power Sources, 165, 667 ((2007).

    Article  CAS  Google Scholar 

  6. X. Yu and S. Ye, J. Power Sources, 172, 145 ((2007)

    Article  CAS  Google Scholar 

  7. M. Lefevre, J. P. Dodelet and P. Bertrand, J. Phys. Chem. B, 106, 8705 ((2002).

    Article  CAS  Google Scholar 

  8. A. J. Wagner, G. M. Wolfe and D. H. Fairbrother, Appl. Surf. Sci., 219, 317 ((2003).

    Article  CAS  Google Scholar 

  9. N. Alonso-Vante, M. Fieber-Erdmann, H. Rossner, E. Holub-Krappe, C. Giorgetti, A. Tadjeddine, E. Dartyge, A. Fontaine and R. Frahm, J. Phys. IV, 7, 887 ((1997).

    CAS  Google Scholar 

  10. P. H. Matter, L. Zhang and U. S. Ozkan, J. Catal., 239, 83 ((2006).

    Article  CAS  Google Scholar 

  11. W. E. Mustain and J. Prakash, J. Power Sources, 170, 28 ((2007).

    Article  CAS  Google Scholar 

  12. P. A. Adcock, S. V. Pacheco, K. M. Norman and F. A. Uribe, J. Electrochem. Soc., 152, A459 (2005).

    Article  CAS  Google Scholar 

  13. V. Tripković, F. Abild-Pedersen, F. Studt, I. Cerri, T. Nagami, T. Bligaard and J. Rossmeisl, Chem. Cat. Chem., 4, 228 ((2012).

    Google Scholar 

  14. L. Samiee, F. Shoghi and A. Vinu, Appl. Surf. Sci., 265, 214 ((2013).

    Article  CAS  Google Scholar 

  15. D. J. Ham and J. S. Lee, Energies, 2, 873 ((2009).

    Article  CAS  Google Scholar 

  16. M. Rosenbaum, F. Zhao, U. Schroder and F. Scholz, Angew. Chem. Int. Ed., 45, 6658 ((2006).

    Article  CAS  Google Scholar 

  17. S. Stariha, A. Serov, K. Artyushkova and P. Atanassov, J. Electrochem. Soc., 37, 1295 ((2015).

    Google Scholar 

  18. C. Gumeci, N. Leonard, B. Halevi and S. C. Barton, J. Electrochem. Soc., 26, 1579 ((2015).

    Google Scholar 

  19. P. Atanassov, A. Serov, K. Artyushkova and B. Kiefer, J. Electrochem. Soc., 21, 950 ((2014).

    Google Scholar 

  20. J. Zhang and L. Dai, ACS Catal., 5, 7244 ((2015).

    Article  CAS  Google Scholar 

  21. D. W. Kim, O. Li and N. Saito, Phys. Chem. Chem. Phys., 17, 407 ((2015).

    Article  CAS  PubMed  Google Scholar 

  22. H. Zhang, H. Osgood, X. Xie, Y. Shao, and G. Wu, Nano Energy, 31, 331 ((2017).

    Article  CAS  Google Scholar 

  23. H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby, K. L. More and P. Zelenay, Science, 357, 479 ((2017).

    Article  CAS  PubMed  Google Scholar 

  24. E. F. Holby, G. Wu, P. Zelenay and C. D. Taylor, J. Phys. Chem. C, 118, 14388 ((2014).

    Article  CAS  Google Scholar 

  25. F. Charreteur, F. Jaouen, S. Ruggeri and J. P. Dodelet, Electrochim. Acta, 53, 2925 ((2008).

    Article  CAS  Google Scholar 

  26. G. Ren, X. Lu, Y. Li, Y. Zhu and L. Dai, ACS Appl. Mater. Interfaces, 8, 4118 ((2016).

    Article  CAS  PubMed  Google Scholar 

  27. H. Shen, T. Thomas, S. A. Rasaki, A. Saad, C. Hu, J. Wang and M. Yang, Electrochem. Energy Rev., 2, 252 ((2019).

    Article  CAS  Google Scholar 

  28. Q. Wang, Z. Zhou, Y. J. Lai, Y. You, J. G. Liu, X. L. Wu and N. Tian, J. Am. Chem. Soc., 136, 10882 ((2014).

    Article  CAS  Google Scholar 

  29. W. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L. J. Zhang and L. J. Wan, J. Am. Chem. Soc., 138, 3570 ((2016).

    Article  CAS  PubMed  Google Scholar 

  30. Z. Wu, X. Xu, B. Hu, H. W. Liang, Y. Lin, L. F. Chen and S. H. Yu, Angew. Chem. Int. Ed., 54, 8179 ((2015).

    Article  CAS  Google Scholar 

  31. S. Yasuda, A. Furuya, Y. Uchibori, J. Kim and K. Murakoshi, Adv. Funct. Mater., 26, 738 ((2016).

    Article  CAS  Google Scholar 

  32. L. Feng, N. Xie and J. Zhong, Materials, 7, 3919 ((2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D. Liu and Y. Long, ACS Appl. Mater. Interfaces, 7, 24063 ((2015).

    Article  CAS  PubMed  Google Scholar 

  34. B. Men, Y. Sun, J. Liu, Y. Tang, Y. Chen, P. Wan and J. Pan, ACS Appl. Mater. Interfaces, 8, 19533 ((2016).

    Article  CAS  PubMed  Google Scholar 

  35. T. Xing, L. H. Li, L. Hou, X. Hu, S. Zhou, R. Peter and Y. Chen, Carbon, 57, 515 ((2013).

    Article  CAS  Google Scholar 

  36. F. T. Johra, J. W. Lee and W. G. Jung, J. Ind. Eng. Chem., 20, 2883

  37. X. Gao, N. Yokota, H. Oda, S. Tanaka, K. Hokamoto and P. Chen, Crystals, 8, 104 ((2018).

    Article  CAS  Google Scholar 

  38. E. Proietti, S. Ruggeri and J. P. Dodelet, J. Electrochem. Soc., 155, B340 (2008).

    Article  CAS  Google Scholar 

  39. M. Lefevre and J. P. Dodelet, Electrochim. Acta, 53, 8269 ((2008).

    Article  CAS  Google Scholar 

  40. G. Liu, X. Li, P. Ganesan and B. N. Popov, Appl. Catal. B, 93, 156 ((2009).

    Article  CAS  Google Scholar 

  41. G. Wu, K. L. More, C. M. Johnston and P. Zelenay, Science, 332, 443 ((2011).

    Article  CAS  PubMed  Google Scholar 

  42. Y. Hu, J. O. Jensen, W. Zhang, S. Martin, R. Chenitz, C. Pan and Q. Li, J. Mater. Chem. Assn, 3, 1752 ((2015).

    Article  CAS  Google Scholar 

  43. W. Yang, X. Liu, X. Yue, J. Jia and S. Guo, J. Am. Chem. Soc., 137, 1436 ((2015).

    Article  CAS  PubMed  Google Scholar 

  44. Y. Niu, X. Huang and W. Hu, J. Power Sources, 332, 305 ((2016).

    Article  CAS  Google Scholar 

  45. K. Artyushkova, I. Matanovic, B. Halevi and P. Atanassov, J. Phys. Chem. C, 121, 2836 ((2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (2018M1A2A2061975, 2018M1A2A2061982, 2018R1A4A1025528, 2019R1A6A3A01096629, 2019R1A2C1004151). It was also supported by Korea Basic Science Institute (KBSI), Jeonju branch. TEM samples were analyzed by Transmission Electron Microscope (JEM-2010, JEOL) installed in the Center for University-Wide Research Facilities (CURF) at Jeonbuk National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pil Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohn, Y., Kim, Dg., Lee, J.H. et al. Defect-controlled Fe-N-doped carbon nanofiber by ball-milling for oxygen reduction reaction. Korean J. Chem. Eng. 37, 938–945 (2020). https://doi.org/10.1007/s11814-020-0522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0522-5

Keywords

Navigation