Skip to main content
Log in

Analyses of scanning electrochemical microscopy and electrochemical impedance spectroscopy in direct methanol fuel cells: permeability resistance and proton conductivity of polyaniline modified membrane

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nafion 112/polyaniline (Na/PANi) composite membranes were synthesized by chemical polymerization of aniline on the perfluorinated structure for use in direct methanol fuel cells as a solid electrolyte. The morphology and physicochemical properties of the composite membranes were analyzed by scanning electron microscopy (SEM), attenuation Fourier reflection infrared spectroscopy (FTIR-ATR), and X-ray photoelectron spectroscopy (XPS). The electrochemical properties of the membranes were investigated by scanning electrochemical microscopy (SECM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). The results show that PANi-modified Nafion during 1 and 24 h decrease the methanol crossover by 78% and 89% and increase the proton conductivity by 17% and 2.6% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li X, Faghri A (2013) Review and advances of direct methanol fuel cells (DMFCs) part I: design, fabrication, and testing with high concentration methanol solutions. J Power Sources 226:223–240

    Article  CAS  Google Scholar 

  2. Wasmus S, Küver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J. Electroanal. Chem. 461(1-2):14–31

    Article  CAS  Google Scholar 

  3. Gurau B, Smotkin ES (2002) Methanol crossover in direct methanol fuel cells: a link between power and energy density. J Power Sources 112(2):339–352

    Article  CAS  Google Scholar 

  4. Lamy C, Léger J-M, Srinivasan S (2005) Direct methanol fuel cells: from a twentieth century electrochemist’s dream to a twenty-first century emerging technology. In: Modern Aspects of Electrochemistry. Kluwer Academic Publishers, pp 53–118

  5. Sopian K, Wan Daud WR (2006) Challenges and future developments in proton exchange membrane fuel cells. Renew Energy 31(5):719–727

    Article  CAS  Google Scholar 

  6. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. In: International Journal of Hydrogen Energy. Pergamon, pp 9349–9384

  7. Kuo P-L, Chen W-F, Liang W-J (2005) Proton transportation in an organic-inorganic hybrid polymer electrolyte based on a polysiloxane/poly(allylamine) network. J Polym Sci Part A Polym Chem 43(15):3359–3367

    Article  CAS  Google Scholar 

  8. Choi P, Jalani NH, Datta R (2005) Thermodynamics and proton transport in Nafion. J Electrochem Soc 152(3):E84

    Article  CAS  Google Scholar 

  9. Ludueña GA, Kühne TD, Sebastiani D (2011) Mixed Grotthuss and vehicle transport mechanism in proton conducting polymers from Ab initio molecular dynamics simulations. Chem Mater 23(6):1424–1429

    Article  CAS  Google Scholar 

  10. Casalegno A, Bresciani F, Di Noto V, et al (2014) Nanostructured Pd barrier for low methanol crossover DMFC. In: International Journal of Hydrogen Energy. Pergamon, pp 2801–2811

  11. Xu C, Faghri A, Li X, Ward T (2010) Methanol and water crossover in a passive liquid-feed direct methanol fuel cell. Int J Hydrogen Energy 35(4):1769–1777

    Article  CAS  Google Scholar 

  12. Escudero-Cid R, Montiel M, Sotomayor L, Loureiro B, Fatás E, Ocón P (2015) Evaluation of polyaniline-Nafion® composite membranes for direct methanol fuel cells durability tests. Int J Hydrogen Energy 40(25):8182–8192

    Article  CAS  Google Scholar 

  13. Nakagawa N, Kamata K, Nakazawa A et al (2006) Methanol crossover controlled by a porous carbon plate as a support. Electrochemistry 74(3):221–225

    Article  CAS  Google Scholar 

  14. Blum A, Duvdevani T, Philosoph M, Rudoy N, Peled E (2003) Water-neutral micro direct-methanol fuel cell (DMFC) for portable applications. J Power Sources 117(1-2):22–25

    Article  CAS  Google Scholar 

  15. Liu JG, Zhao TS, Chen R, Wong CW (2005) The effect of methanol concentration on the performance of a passive DMFC. Electrochem commun 7(3):288–294

    Article  CAS  Google Scholar 

  16. Liu JG, Zhao TS, Liang ZX, Chen R (2006) Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells. J Power Sources 153(1):61–67

    Article  CAS  Google Scholar 

  17. Gatto I, Carbone A, Pedicini R, Passalacqua E (2006) ZrO 2 – Nafion composite membranes for polymer electrolyte fuel cells ( PEFCs ) at intermediate temperature. J Power Sources 163:47–51

    Article  CAS  Google Scholar 

  18. Baglio V, Aric AS, Di Blasi A et al (2005) Nafion – TiO 2 composite DMFC membranes: physico-chemical properties of the filler versus electrochemical performance. Electrochim Acta 50(5):1241–1246

    Article  CAS  Google Scholar 

  19. Jiang R, Kunz HR, Fenton JM (2006) Composite silica/Nafion® membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells. J Memb Sci 272(1-2):116–124

    Article  CAS  Google Scholar 

  20. Kumar R, Xu C, Scott K (2012) Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells. RSC Adv 2(23):8777–8782

    Article  CAS  Google Scholar 

  21. Enotiadis A, Angjeli K, Baldino N, Nicotera I, Gournis D (2012) Graphene-based Nafion nanocomposite membranes: enhanced proton transport and water retention by novel organo-functionalized graphene oxide nanosheets. Small 8(21):3338–3349

    Article  CAS  PubMed  Google Scholar 

  22. Yang M, Lu S, Lu J, Jiang SP, Xiang Y (2010) Layer-by-layer self-assembly of PDDA/PWA-Nafion composite membranes for direct methanol fuel cells. Chem Commun 46(9):1434–1436

    Article  CAS  Google Scholar 

  23. Li S, Zhang S, Zhang Q, Qin G (2012) Assembly of an unbalanced charged polyampholyte onto Nafion® to produce high-performance composite membranes. Chem Commun 48(100):12201–12203

    Article  CAS  Google Scholar 

  24. Chen CY, Garnica-Rodriguez JI, Duke MC, Costa RFD, Dicks AL, da Costa JCD (2007) Nafion/polyaniline/silica composite membranes for direct methanol fuel cell application. J Power Sources 166(2):324–330

    Article  CAS  Google Scholar 

  25. Jiang R, Zhang Y, Swier S, Wei X, Erkey C, Kunz HR, Fenton JM (2005) Preparation via supercritical fluid route of Pd-impregnated nafion membranes which exhibit reduced methanol crossover for DMFC. Electrochem Solid-State Lett 8(11):A611

    Article  CAS  Google Scholar 

  26. Sauk J, Byun J, Kim H (2004) Grafting of styrene on to Nafion membranes using supercritical CO 2 impregnation for direct methanol fuel cells. J Power Sources 132(1-2):59–63

    Article  CAS  Google Scholar 

  27. Lin HL, Yu TL, Huang LN, Chen LC, Shen KS, Jung GB (2005) Nafion/PTFE composite membranes for direct methanol fuel cell applications. J Power Sources 150:11–19

    Article  CAS  Google Scholar 

  28. Shao ZG, Wang X, Hsing IM (2002) Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cell. J Memb Sci 210(1):147–153

    Article  CAS  Google Scholar 

  29. Park HS, Kim YJ, Hong WH, Lee HK (2006) Physical and electrochemical properties of Nafion/polypyrrole composite membrane for DMFC. J Memb Sci 272(1-2):28–36

    Article  CAS  Google Scholar 

  30. Smit MA, Ocampo AL, Espinosa-Medina MA, Sebastián PJ (2003) A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell. J Power Sources 124(1):59–64

    Article  CAS  Google Scholar 

  31. Zhu J, Sattler RR, Garsuch A, Yepez O, Pickup PG (2006) Optimisation of polypyrrole/Nafion composite membranes for direct methanol fuel cells. Electrochim Acta 51(19):4052–4060

    Article  CAS  Google Scholar 

  32. Dutta K, Das S, Kundu PP (2015) Partially sulfonated polyaniline induced high ion-exchange capacity and selectivity of Nafion membrane for application in direct methanol fuel cells. J Memb Sci 473:94–101

    Article  CAS  Google Scholar 

  33. Yang J, Shen PK, Varcoe J, Wei Z (2009) Nafion/polyaniline composite membranes specifically designed to allow proton exchange membrane fuel cells operation at low humidity. J Power Sources 189(2):1016–1019

    Article  CAS  Google Scholar 

  34. Park HS, Kim YJ, Hong WH, Choi YS, Lee HK (2005) Influence of morphology on the transport properties of perfluorosulfonate ionomers/polypyrrole composite membrane. Macromolecules 38(6):2289–2295

    Article  CAS  Google Scholar 

  35. Pud A, Ogurtsov N, Korzhenko A, Shapoval G (2003) Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers. Prog. Polym. Sci. 28(12):1701–1753

    Article  CAS  Google Scholar 

  36. Kitani A, Akashi T, Sugimoto K, Ito S (2001) Electrocatalytic oxidation of methanol on platinum modified polyaniline electrodes. Synth Met 121(1-3):1301–1302

    Article  CAS  Google Scholar 

  37. El Jaouhari A, Laabd M, Aouzal Z et al (2016) Effect of electrolytic conditions on PANi electrosynthesis on stainless steel: a new application to polycarboxy-benzoic acids removal from industrial effluents. Prog Org Coatings 101:233–239

    Article  CAS  Google Scholar 

  38. Jugović BZ, Trišović TL, Stevanović J, Maksimović M, Grgur BN (2006) Novel electrolyte for zinc-polyaniline batteries. J Power Sources 160(2):1447–1450

    Article  CAS  Google Scholar 

  39. Baptista AC, Ropio I, Romba B, Nobre JP, Henriques C, Silva JC, Martins JI, Borges JP, Ferreira I (2018) Cellulose-based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries. J Mater Chem A 6(1):256–265

    Article  CAS  Google Scholar 

  40. El Jaouhari A, Ben JS, El GA et al (2018) Synthesis and spectroscopic characterization of polypyrrole PPy coating on flax fibers and its behaviour toward trimethylamine vapor. Synth Met 245:237–244

    Article  CAS  Google Scholar 

  41. Benyaich A, Deslouis C, El Moustafid T et al (1996) Electrochemical properties of pani films for different counter-ions in acidic pH analysed by impedance techniques. Electrochim Acta 41(11-12):1781–1785

    Article  CAS  Google Scholar 

  42. Ben Jadi S, El Guerraf A, Bazzaoui EA et al (2019) Synthesis, characterization, and transport properties of Nafion-polypyrrole membrane for direct methanol fuel cell (DMFC) application. J Solid State Electrochem 23(8):2423–2433

    Article  CAS  Google Scholar 

  43. Hasanabadi N, Ghaffarian SR, Hasani-Sadrabadi MM (2011) Magnetic field aligned nanocomposite proton exchange membranes based on sulfonated poly (ether sulfone) and Fe2O3 nanoparticles for direct methanol fuel cell application. Int J Hydrogen Energy 36(23):15323–15332

    Article  CAS  Google Scholar 

  44. Xie Q, Li Y, Chen X, Hu J, Li L, Li H (2015) Composite proton exchange membranes based on phosphosilicate sol and sulfonated poly(ether ether ketone) for fuel cell applications. J Power Sources 282:489–497

    Article  CAS  Google Scholar 

  45. EPLR XL, Holmes SM (2006) Evaluation of composite membranes for direct methanol fuel cells. J Power Sources 154(1):115–123

    Article  CAS  Google Scholar 

  46. Jiaxing H (2008) Syntheses and applications of conducting polymer polyaniline nanofibers. Pure and Applied Chemistry 78:15–27

    Google Scholar 

  47. Wang CH, Chen CC, Hsu HC, du HY, Chen CP, Hwang JY, Chen LC, Shih HC, Stejskal J, Chen KH (2009) Low methanol-permeable polyaniline/Nafion composite membrane for direct methanol fuel cells. J Power Sources 190(2):279–284

    Article  CAS  Google Scholar 

  48. Palaniappan S, Shekhar RC (2004) Synthesis of 7-hydroxy-4-methyl coumarin using polyaniline supported acid catalyst. J Mol Catal A Chem 209(1-2):117–124

    Article  CAS  Google Scholar 

  49. Lowry SR, Mauritz KA (1980) An investigation of ionic hydration effects in perfluorosulfonate ionomers by Fourier transform infrared spectroscopy. J Am Chem Soc 102(14):4665–4667

    Article  CAS  Google Scholar 

  50. Lalani KW, Greg JS, Massimo FB et al (2005) Photolithographic synthesis of polyaniline nanofibres - IOPscience. Nanotechnology 16:2833

    Article  CAS  Google Scholar 

  51. Athawale AA, Pethkar S, Sharma S, Nirkhe C (2002) Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sensors Actuators, B Chem 85:131–136

    Article  Google Scholar 

  52. Shao ZG, Joghee P, Hsing IM (2004) Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells. J Memb Sci 229(1-2):43–51

    Article  CAS  Google Scholar 

  53. Miroslava T, Stejskal J (2011) Polyaniline: the infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report). Pure and Applied Chemistry 83:1803–1817

    Article  CAS  Google Scholar 

  54. Hoffmann EA, Fekete ZA, Korugic-Karasz LS, Karasz FE, Wilusz E (2004) Theoretical and experimental X-ray photoelectron spectroscopy investigation of ion-implanted nafion. Journal of Polymer Science Part A: Polymer Chemistry 42(3):551–556

    Article  CAS  Google Scholar 

  55. Mokhtarian N, Ghasemi M, Wan Daud WR, Ismail M, Najafpour G, Alam J (2013) Improvement of microbial fuel cell performance by using nafion polyaniline composite membranes as a separator. J Fuel Cell Sci Technol 10(4)

  56. Tan S, Bélanger D (2005) Characterization and transport properties of nafion/polyaniline composite membranes. J Phys Chem B 109(49):23480–23490

    Article  CAS  PubMed  Google Scholar 

  57. Ramya K, Dhathathreyan KS (2003) Direct methanol fuel cells: determination of fuel crossover in a polymer electrolyte membrane. J Electroanal Chem 542:109–115

    Article  CAS  Google Scholar 

  58. Ling J, Savadogo O (2004) Comparison of methanol crossover among four types of Nafion membranes. J Electrochem Soc 151(10):A1604

    Article  CAS  Google Scholar 

  59. Neves LA, Coelhoso IM, Crespo JG (2010) Methanol and gas crossover through modified Nafion membranes by incorporation of ionic liquid cations. J Memb Sci 360(1-2):363–370

    Article  CAS  Google Scholar 

  60. Easton EB, Langsdorf BL, Hughes JA, Sultan J, Qi Z, Kaufman A, Pickup PG (2003) Characteristics of polypyrrole/nafion composite membranes in a direct methanol fuel cell. J Electrochem Soc 150(10):C735

    Article  CAS  Google Scholar 

  61. Zawodzinski TA, Neeman M, Sillerud LO, Gottesfeld S (1991) Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes. J Phys Chem 95(15):6040–6044

    Article  CAS  Google Scholar 

  62. Yoshitake M, Tamura M, Yoshida N, Ishisaki T (1996) Studies of perfluorinated ion exchange membranes for polymer electrolyte fuel cells. Denki Kagaku oyobi Kogyo Butsuri Kagaku 64(6):727–736

    Article  CAS  Google Scholar 

  63. Slade S, Campbell SA, Ralph TR, Walsh FC (2002) Ionic conductivity of an extruded Nafion 1100 EW series of membranes. J Electrochem Soc 149:12–1556

    Article  CAS  Google Scholar 

  64. Kolde J, Bahar B, Wilson M, Zawodzinski T (1995) Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells. Electrochem Soc Proc PV95 23:193

    Google Scholar 

  65. Napoli L, Franco J, Fasoli H, Sanguinetti A (2014) Conductivity of Nafion® 117 membrane used in polymer electrolyte fuel cells. In: International Journal of Hydrogen Energy. Elsevier Ltd, pp 8656–8660

  66. Kriksunov LB, Macdonald DD, Millett PJ (1994) Tungsten/tungsten oxide pH sensing electrode for high temperature aqueous environments. J Electrochem Soc 141(11):3002–3005

    Article  CAS  Google Scholar 

  67. Maréchal M, Souquet JL, Guindet J, Sanchez JY (2007) Solvation of sulphonic acid groups in Nafion® membranes from accurate conductivity measurements. Electrochem commun 9(5):1023–1028

    Article  CAS  Google Scholar 

  68. Patra S, Puthirath AB, Vineesh TV, Narayanaru S, Soman B, Suriyakumar S, Stephan AM, Narayanan TN (2018) On the development of a proton conducting solid polymer electrolyte using poly(ethylene oxide). Sustain Energy Fuels 2(8):1870–1877

    Article  CAS  Google Scholar 

  69. Uma Devi A, Divya K, Rana D, Sri Abirami Saraswathi M, Nagendran A (2018) Highly selective and methanol resistant polypyrrole laminated SPVdF-co-HFP/PWA proton exchange membranes for DMFC applications. Mater Chem Phys 212:533–542

    Article  CAS  Google Scholar 

  70. Yuan T, Pu L, Huang Q, Zhang H, Li X, Yang H (2014) An effective methanol-blocking membrane modified with graphene oxide nanosheets for passive direct methanol fuel cells. Electrochim Acta 117:393–397

    Article  CAS  Google Scholar 

Download references

Funding

This work has been supported by the MESRSFC and CNRST (Morocco) under grant no. PPR/30/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bazzaoui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Jadi, S., El Guerraf, A., Kiss, A. et al. Analyses of scanning electrochemical microscopy and electrochemical impedance spectroscopy in direct methanol fuel cells: permeability resistance and proton conductivity of polyaniline modified membrane. J Solid State Electrochem 24, 1551–1565 (2020). https://doi.org/10.1007/s10008-020-04659-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04659-2

Keywords

Navigation