Skip to main content
Log in

Structural, Optical Absorption and Conductivity of PIn/Co3O4 Composites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This article presents the results obtained from structural, optical absorption and dc conductivity studies of pure polyindole (PIn) and its Co3O4 doped composites. Polyindole has been prepared by chemical oxidation method at room temperature using APS as an oxidant. The composites with varied concentrations of Co3O4 were prepared by in situ polymerization method. The obtained powder XRD patterns of both PIn and its composites indicated amorphous nature. Shifting of aromatic alkene peaks in FTIR reveals interaction between PIn and Co3O4. DC electrical conductivity has been measured in the temperature range 303–393 K and its observed variation inferred semiconducting nature of both pure PIn and the composites. Optical absorption studies have carried out and the band gap for both direct and indirect allowed transitions has been determined to be in the range from 1.79 to 2.34 eV and 2.38 to 3.19 eV respectively. These sizes of band gap values make them to be suitable for opto electronic applications. Activation energy for dc conduction has been determined using Arrhenius expression and it is found to be in the range of 0.3252–0.3806 eV. Conductivity increased and activation energy for conduction decreased with increase of Co3O4 concentration. This is interpreted to be due to decrease of hopping distance of charge carriers with increase of Co3O4 in the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Rajasudha, H. Shankar, P. Thangadurai, N. Boukos, V. Narayanan, A. Stephen, Preparation and characterization of polyindole-ZnO composite polymer electrolyte with LiClO4. Ionics 16, 839–848 (2010). https://doi.org/10.1007/s11581-010-0472-8

    Article  CAS  Google Scholar 

  2. M.T. Ramesan, Synthesis and characterization of magnetoelectric nanomaterial composed of Fe3O4 and polyindole. Adv. Polym. Technol. 32, 21362–21369 (2013). https://doi.org/10.1002/adv.21362

    Article  CAS  Google Scholar 

  3. R. Pavul Raj, P. Ragupathy, S. Mohan, Remarkable capacitive behavior of Co3O4-polyindole composite as electrode material for supercapacitor applications. J. Mater. Chem. A 3(48), 24338–24348 (2015). https://doi.org/10.1039/C5TA07046E

    Article  CAS  Google Scholar 

  4. B.H. Shambharkar, S.S. Umare, Production and characterization of polyaniline/Co3O4 nanocomposite as a cathode of Zn-polyaniline battery. Mater. Sci. Eng. B 175(2), 120–128 (2010). https://doi.org/10.1016/j.mseb.2010.07.014

    Article  CAS  Google Scholar 

  5. E. Ozkazanc, PTh/Co3O4 nanocomposites as new conducting materials for micro/nano-sized electronic devices. Polym. Eng. Sci. 57(11), 1–10 (2017). https://doi.org/10.1002/pen.24494

    Article  CAS  Google Scholar 

  6. P.M. Padwal, S.L. Kadam, S.M. Mane, S.B. Kulkarni, Synthesis and charaterization of supercapacitive behavior of electrodeposited PANI/ Co3O4 layered composite electrode. J. Chin. Adv. Mater. Soc (2015). https://doi.org/10.1080/22243682.2015.1114903

    Article  Google Scholar 

  7. N. Parvatikar, S. Jain, C.M. Kanamadi, B.K. Chougule, S.V. Bhoraskar, Humidity sensing and electrical properties of polyaniline/cobalt oxide composites. J. Appl. Polym. Sci. 103, 653–658 (2007). https://doi.org/10.1002/app.23869

    Article  CAS  Google Scholar 

  8. B. Nandapure, S. Kondawar, M. Salunkhe, A. Nandapure, Nanostructure cobalt oxide reinforced conductive and magnetic polyaniline nanocomposites. J. Compos. Mater. 47, 559–567 (2012). https://doi.org/10.1177/0021998312442559

    Article  CAS  Google Scholar 

  9. S.X. Wang, L.X. Sun, Z.C. Tan, Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. J. Therm. Anal. Calorim 89(3), 609–613 (2007). https://doi.org/10.1002/7hem.200802671

    Article  CAS  Google Scholar 

  10. M. Elango, M. Deepa, R. Subramanian, G. Saraswathi, Synthesis, structural characterization and antimicrobial activities of polyindole stabilized Ag–Co3O4 nanocomposite by reflux condensation method. Mater. Chem. Phys. 216, 305–315 (2018). https://doi.org/10.1016/j.matchemphys.2018.05.049

    Article  CAS  Google Scholar 

  11. P. Rejani, B. Beena, Structural and optical properties of polyindole-manganese oxide nanocomposite. Indian J. Adv. Chem. Sci. 2(3), 244–248 (2013)

    Google Scholar 

  12. V.Q. Trung, D.N. Huyen, Synthesis, properties and application of polyindole/TiO2 nanocomposites. J. Phys. Conf. Ser. 187, 012058 (2009). https://doi.org/10.1088/1742-6596/187/1/012058

    Article  CAS  Google Scholar 

  13. S.R. Nalage, S.T. Navale, V.B. Patil, Polypyrrole-NiO hybrid nanocomposite: structural, morphological, optical and electrical transport studies. Measurement 46, 3268–3275 (2013). https://doi.org/10.1016/j.measurement.2013.06.049

    Article  Google Scholar 

  14. P. Jayakrishnan, P.P. Pradyumnan, M.T. Ramesan, Thermal and electrical properties of polyindole/magnetic nanocomposites. Chemist 89(1), 27–32 (2016)

    Google Scholar 

  15. R. Pavul Raj, P. Ragupathy, S. Mohan, Remarkable capacitive behavior of a Co3O4– polyindole composite as electrode material for supercapacitor applications. J. Mater. Chem. A 3, 24338 (2015)

    Article  Google Scholar 

  16. G. Rajasudha, A.P. Nancy, T. Paramasivam, N. Boukos, V. Narayanan, A. Stephen, Synthesis and characterization of polyindole-NiO-Based composite polymer electrolyte with LiClO4. Int. J. Polym. Mater. 60, 877–892 (2011). https://doi.org/10.1080/00914037.2010.551367

    Article  CAS  Google Scholar 

  17. B. Gupta, D.S. Chauhan, R. Prakash, Controlled morphology of conducting polymers: formation of nanorods and microspheres of polyindole. Mater. Chem. Phys. 120(2), 625–630 (2010). https://doi.org/10.1016/j.matchemphys.2009.12.026

    Article  CAS  Google Scholar 

  18. H. Talbi, E.B. Maarouf, B. Humbert, M. Alnot, J.J. Ehrhardt, D. Billaud, Spectroscopic studies of electrochemically doped polyindole. J. Phys. Chem Solids 57(6–8), 1145–1151 (1996)

    Article  CAS  Google Scholar 

  19. M. Tiwari, A. Kumar, H.S. Umre, R. Prakash, Microwave-assisted chemical synthesis of conducting polyindole: study of electrical property using Schottky junction. J. Appl. Polym. Sci 132(27), 42192–42201 (2015). https://doi.org/10.1002/APP.42192

    Article  Google Scholar 

  20. R. Ganeshan, D. Dhinasekaran, T. Paramasivam, N. Boukos, V. Narayanan, Preparation and characterization of polyindole-iron oxide composite polymer electrolyte containing LiClO4. Polym. Plast. Technol. Eng. 51, 225–230 (2012). https://doi.org/10.1080/03602559.2011.618159

    Article  CAS  Google Scholar 

  21. A. Kumar, A.C. Pandey, R. Prakash, Electro-oxidation of formic acid using polyindole-SnO2 nanocomposite. Catal. Sci. Technol. 2, 2533–2538 (2012). https://doi.org/10.1039/c2cy20382k

    Article  CAS  Google Scholar 

  22. Z.M. Elimat, A.M. Zihlif, G. Ragosta, Optical characterization of poly(ethylene oxide)/alumina composites. Phys. B 405, 3756–3760 (2010). https://doi.org/10.1016/j.physb.2010.05.081

    Article  CAS  Google Scholar 

  23. D.J. Bhagat, G.R. Dhokane, Novel synthesis and DC electrical studies of polyindole/poly(vinyl acetate) composite films. Mater. Lett. 136, 251–253 (2014). https://doi.org/10.1016/j.cplett.2014.11.052

    Article  CAS  Google Scholar 

  24. E. Dogan, E. Ozkazanc, H. Ozkazanc, Multifunctional polyindole/nanometal-oxide composites: optoelectronic and charge transport properties. Synth. Metals 256, 116154 (2019). https://doi.org/10.1016/j.synthmet.2019.116154

    Article  CAS  Google Scholar 

  25. G. Chandraprabha, T. Sankarappa, J. Kattimani, J.S. Ashwajeet, K. Praveenkumar, R. Ramanna, Structure and conductivity studies of PTh-Ni composites. Res. J. Physical Sci. 3(9), 5–10 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge, Prof V. Ravindrachary, Dept of Physics, Mangalore University for providing some of characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sankarappa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghavendra, B., Sankarappa, T. & Malge, A. Structural, Optical Absorption and Conductivity of PIn/Co3O4 Composites. J Inorg Organomet Polym 30, 3586–3594 (2020). https://doi.org/10.1007/s10904-020-01589-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01589-4

Keywords

Navigation