Skip to main content
Log in

Novel synthesis of PVA/GA hydrogel microspheres based on microfluidic technology

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

The hydrogel microspheres of polyvinyl alcohol (PVA)/ glutaraldehyde (GA) used as embolic agent can be applied in the embolization therapy. The mechanical properties and size precision of the hydrogel microspheres have a strong influence on its clinical application. In this work, the microfluidic technology was employed in the preparation of size-controlled PVA/GA hydrogel microspheres, and a novel in-situ gelation system was proposed. The influences of cross-linker (GA) content and the total content of PVA and GA in the dispersed phase, and catalyst content in the continuous phase on the compressive strength and deformation of PVA/GA gel microspheres were investigated in detail. Also, the kinetic behaviours of the formation of PVA/GA hydrogel microspheres in the microfluidic system were studied, and the results indicated that the gelation processes based on microfluidics accord to first-order reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  PubMed  CAS  Google Scholar 

  2. Kenawy E, Kamoun EA, Eldin MSM, El-Meligy MA (2014) Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: synthesis and characterization for biomedical applications. Arab J Chem 7(3):372–380. https://doi.org/10.1016/j.arabjc.2013.05.026

    Article  CAS  Google Scholar 

  3. Kamoun EA, Chen X, Mohy Eldin MS, Kenawy E-RS (2015) Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arab J Chem 8(1):1–14. https://doi.org/10.1016/j.arabjc.2014.07.005

    Article  CAS  Google Scholar 

  4. Li XQ, Gong PW, Li YZ, Yu JF, Wang F, Li XA, Fan ZJ, Wang ZF (2019) Double-carrier drug delivery system based on polyurethane-polyvinyl alcohol/layered double hydroxide nanocomposite hydrogel. Mater Lett 243:1–4. https://doi.org/10.1016/j.matlet.2019.01.151

    Article  CAS  Google Scholar 

  5. Dai HJ, Zhang H, Ma L, Zhou HY, Yu Y, Guo T, Zhang YH, Huang HH (2019) Green pH/magnetic sensitive hydrogels based on pineapple peel cellulose and polyvinyl alcohol: synthesis, characterization and naringin prolonged release. Carbohydr Polym 209:51–61. https://doi.org/10.1016/j.carbpol.2019.01.014

    Article  PubMed  CAS  Google Scholar 

  6. Yang X, Liu Q, Chen X, Yu F, Zhu ZJCP (2008) Investigation of PVA/ws-chitosan hydrogels prepared by combined γ-irradiation and freeze-thawing. Carbohydr Polym 73(3):401–408

    Article  CAS  Google Scholar 

  7. Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Appl Biomater 100(5):1451–1457. https://doi.org/10.1002/jbm.b.32694

    Article  PubMed  CAS  Google Scholar 

  8. Chen Y-P, Zhang J-L, Zou Y, Wu Y-L (2019) Recent advances on polymeric beads or hydrogels as embolization agents for improved Transcatheter arterial chemoembolization (TACE). Frontiers in chemistry 7. https://doi.org/10.3389/fchem.2019.00408

  9. Hu J, Albadawi H, Chong BW, Deipolyi AR, Sheth RA, Khademhosseini A, Oklu R (2019) Advances in biomaterials and Technologies for Vascular Embolization. Adv Mater 31(33). https://doi.org/10.1002/adma.201901071

  10. Doucet J, Kiri L, O'Connell K, Kehoe S, Lewandowski RJ, Liu DM, Abraham RJ, Boyd D (2018) Advances in degradable embolic microspheres: a state of the art review. J Funct Biomater 9(1). https://doi.org/10.3390/jfb9010014

  11. Keussen I, Bengtsson J, Gavier-Widen D, Karlstam E (2018) Uterine artery embolization in a sheep model: biodegradable versus non-degradable microspheres. Acta Radiol 59(10):1210–1217. https://doi.org/10.1177/0284185118757575

    Article  PubMed  Google Scholar 

  12. Cha WI, Hyon SH, Oka M, Ikada Y (1996) Mechanical and wear properties of poly(vinyl alcohol) hydrogels. Macromol Symp 109:115–126. https://doi.org/10.1002/masy.19961090111

    Article  CAS  Google Scholar 

  13. Chen G, Wei R, Huang X, Wang F, Chen Z (2019) Synthesis and assessment of sodium alginate-modified silk fibroin microspheres as potential hepatic arterial embolization agent. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.11.122

  14. Bolto B, Tran T, Hoang M, Xie Z (2009) Crosslinked poly(vinyl alcohol) membranes. Prog Polym Sci 34(9):969–981. https://doi.org/10.1016/j.progpolymsci.2009.05.003

    Article  CAS  Google Scholar 

  15. Tripathi S, Mehrotra GK, Dutta PK (2009) Physicochemical and bioactivity of cross-linked chitosan-PVA film for food packaging applications. Int J Biol Macromol 45(4):372–376. https://doi.org/10.1016/j.ijbiomac.2009.07.006

    Article  PubMed  CAS  Google Scholar 

  16. Kurkuri MD, Aminabhavi TM (2004) Poly(vinyl alcohol) and poly(acrylic acid) sequential interpenetrating network pH-sensitive microspheres for the delivery of diclofenac sodium to the intestine. J Control Release 96(1):9–20. https://doi.org/10.1016/j.jconrel.2003.12.025

    Article  PubMed  CAS  Google Scholar 

  17. Rao KSVK, Naidu BVK, Subha MCS, Sairam M, Aminabhavi TM (2006) Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil. Carbohydr Polym 66(3):333–344. https://doi.org/10.1016/j.carbpol.2006.03.025

    Article  CAS  Google Scholar 

  18. EdS Jr C, Pereira MM, Mansur HS (2009) Properties and biocompatibility of chitosan films modified by blending with PVA and chemically crosslinked. J Mater Sci Mater Med 20(2):553–561. https://doi.org/10.1007/s10856-008-3627-7

    Article  CAS  Google Scholar 

  19. Wang T, Turhan M, Gunasekaran S (2004) Selected properties of pH-sensitive, biodegradable chitosan-poly(vinyl alcohol) hydrogel. Polym Int 53(7):911–918. https://doi.org/10.1002/pi.1461

    Article  CAS  Google Scholar 

  20. Zhai ML, Yoshii F, Kume T, Hashim K (2002) Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydr Polym 50(3):295–303. https://doi.org/10.1016/s0144-8617(02)00031-0

    Article  CAS  Google Scholar 

  21. Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels ... A review. Saudi Pharm J 24(5):554–559. https://doi.org/10.1016/j.jsps.2015.03.022

    Article  PubMed  Google Scholar 

  22. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57(1):19–34. https://doi.org/10.1016/s0939-6411(03)00161-9

    Article  PubMed  CAS  Google Scholar 

  23. Barber EA, Turasan H, Gezer PG, Devina D, Liu GL, Kokini J (2019) Effect of plasticizing and crosslinking at room temperature on microstructure replication using soft lithography on zein films. J Food Eng 250:55–64. https://doi.org/10.1016/j.jfoodeng.2019.01.018

    Article  CAS  Google Scholar 

  24. Villanueva-Flores F, Miranda-Hernandez M, Flores-Flores JO, Porras-Sanjuanico A, Hu HL, Perez-Martinez L, Ramirez OT, Palomares LA (2019) Poly(vinyl alcohol co-vinyl acetate) as a novel scaffold for mammalian cell culture and controlled drug release. J Mater Sci 54(10):7867–7882. https://doi.org/10.1007/s10853-019-03402-1

    Article  CAS  Google Scholar 

  25. de Luna MS, Ascione C, Santillo C, Verdolotti L, Lavorgna M, Buonocore GG, Castaldo R, Filippone G, Xia H, Ambrosio L (2019) Optimization of dye adsorption capacity and mechanical strength of chitosan aerogels through crosslinking strategy and graphene oxide addition. Carbohydr Polym 211:195–203. https://doi.org/10.1016/j.carbpol.2019.02.002

    Article  CAS  Google Scholar 

  26. Hsiao C-J, Lin J-F, Wen H-Y, Lin Y-M, Yang C-H, Huang K-S, Shaw J-F (2020) Enhancement of the stability of chlorophyll using chlorophyll-encapsulated polycaprolactone microparticles based on droplet microfluidics. Food Chem:306. https://doi.org/10.1016/j.foodchem.2019.125300

  27. Ha Eun L, Kyu Hwan C, Xia M, Dong Woo K, Bum Jun P (2020) Interactions between polystyrene particles with diameters of several tens to hundreds of micrometers at the oil-water interface. J Colloid Interface Sci 560:838–848. https://doi.org/10.1016/j.jcis.2019.10.095

    Article  PubMed  CAS  Google Scholar 

  28. Operti MC, Dolen Y, Keulen J, van Dinther EAW, Figdor CG, Tagit O (2019) Microfluidics-assisted size tuning and biological evaluation of PLGA particles. Pharmaceutics 11(11):590. https://doi.org/10.3390/pharmaceutics11110590

    Article  PubMed Central  CAS  Google Scholar 

  29. Chen WY, Kim JH, Zhang D, Lee KH, Cangelosi GA, Soelberg SD, Furlong CE, Chung JH, Shen AQ (2013) Microfluidic one-step synthesis of alginate microspheres immobilized with antibodies. J R Soc Interface 10(88):20130566. https://doi.org/10.1098/rsif.2013.0566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Mazutis L, Vasiliauskas R, Weitz DA (2015) Microfluidic production of alginate hydrogel particles for antibody encapsulation and release. Macromol Biosci 15(12):1641–1646. https://doi.org/10.1002/mabi.201500226

    Article  PubMed  CAS  Google Scholar 

  31. Anseth KS, Bowman CN, BrannonPeppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17(17):1647–1657. https://doi.org/10.1016/0142-9612(96)87644-7

    Article  PubMed  CAS  Google Scholar 

  32. Jabrail FH, Ahmad AZ, Gupta KC (2016) Synthesis and characterization of pH responsive polyvinyl alcohol hydrogels with chitosan and poly-acrylonitrile. J Polym Mater 33(3):539–553

    CAS  Google Scholar 

  33. Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C Biomim Supramol Syst 28(4):539–548. https://doi.org/10.1016/j.msec.2007.10.088

    Article  CAS  Google Scholar 

  34. Serra C, Berton N, Bouquey M, Prat L, Hadziioannou G (2007) A predictive approach of the influence of the operating parameters on the size of polymer particles synthesized in a simplified microfluidic system. Langmuir 23(14):7745–7750. https://doi.org/10.1021/la063289s

    Article  PubMed  CAS  Google Scholar 

  35. Xiang L, Ya-Ting Y, Cao-Fei F, Qun-Ying H, Liu-Si S, Zhen-Qi C, Serra CC (2014) A microfluidic-assisted fabrication of size-controlled Porose CeO2 microspheres as an analog production of nuclear fuel beads. Adv Sci Technol 94:55–68. https://doi.org/10.4028/www.scientific.net/AST.94.55

    Article  CAS  Google Scholar 

  36. Ye B, Miao J-L, Li J-L, Zhao Z-C, Chang Z, Serra CA (2013) Fabrication of size-controlled CeO2 microparticles by a microfluidic sol-gel process as an analog preparation of ceramic nuclear fuel particles. J Nucl Sci Technol 50(8):774–780. https://doi.org/10.1080/00223131.2013.796897

    Article  CAS  Google Scholar 

  37. Chang Z, Serra CA, Bouquey M, Prat L, Hadziioannou G (2009) Co-axial capillaries microfluidic device for synthesizing size- and morphology-controlled polymer core-polymer shell particles. Lab Chip 9(20):3007–3011. https://doi.org/10.1039/b913703c

    Article  PubMed  CAS  Google Scholar 

  38. Chang Z, Serra CA, Bouquey M, Kraus I, Li S, Koehler JM (2010) Multiscale materials from microcontinuous-flow synthesis: ZnO and au nanoparticle-filled uniform and homogeneous polymer microbeads. Nanotechnology 21(1). https://doi.org/10.1088/0957-4484/21/1/015605

  39. Hidaka K, Nakamura M, Osuga K, Miyazaki H, Wada S (2010) Elastic characteristics of microspherical embolic agents used for vascular interventional radiology. J Mech Behav Biomed Mater 3(7):497–503. https://doi.org/10.1016/j.jmbbm.2010.05.004

    Article  PubMed  Google Scholar 

  40. Peppas NA, Mikos AG (1986) Preparation methods and structure of hydrogels. Hydrogels Med Pharm 1:1–27

    CAS  Google Scholar 

  41. Xu JY, Liu X, Ren XY, Gao GH (2018) The role of chemical and physical crosslinking in different deformation stages of hybrid hydrogels. Eur Polym J 100:86–95. https://doi.org/10.1016/j.eurpolymj.2018.01.020

    Article  CAS  Google Scholar 

  42. Du L, Huang Y, Zhang Q, Zhou Y, Huang J, Yan L, Yu Z, Qin A, Yang H, Chen M, Lang L, Bian B, Li X, Fu J (2019) Synthesis and assessment of drug-eluting microspheres for transcatheter arterial chemoembolization. Acta Biomater 88:370–382. https://doi.org/10.1016/j.actbio.2019.02.035

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (grant numbers 2017YFE0300504) and the National Nature Science Foundation of China (grant numbers 21978279). Also, the authors thank the Key Research and Development Projects in Anhui Province of the People’s Republic of China (No. 201904a05020048) for financial support in the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenqi Chang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Highlights

Fabrication of PVA/GA hydrogel microspheres by a novel in-situ gelation reaction in microfluidics.

Precise size control of embolic microspheres with a very narrow size distribution.

PVA/GA hydrogel formation kinetics of a first order reaction in microfluidic preparation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, D., Guo, L., Wang, Y. et al. Novel synthesis of PVA/GA hydrogel microspheres based on microfluidic technology. J Flow Chem 10, 551–562 (2020). https://doi.org/10.1007/s41981-020-00101-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-020-00101-w

Keywords

Navigation