Skip to main content
Log in

The Thermodynamics of the Perturbed Schwarzschild Black Hole

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The phenomena like gravitational waves, Hawking radiation, and growth of black holes not only change the curvature of spacetime continuously but also affect the thermodynamical properties of the sources over time. The present study explores the effect of time in the thermodynamical properties of the corresponding spacetime. We define a general time conformal factor e𝜖ζ(t) in the Schwarzschild black hole spacetime, where 𝜖 is a small parameter that brings perturbation in the said spacetime. This technique re-defines the energy content of spacetime. Moreover, the effect of time is explored in the thermodynamical properties of the perturbed Schwarzschild black hole. We calculate the event horizon of the spacetime as a function of t. Then we study the effect of time in the surface gravity, pressure, volume, and Hawking temperature of the perturbed Schwarzschild black hole and analyze them graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bekenstein, J. D.: Black holes and entropy. Phys. Rev. D. 7(8), 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bardeen, J. M., Carter, B., Hawking, S. W.: The four laws of black hole mechanics. Commun. Math. Phys. 31(2), 161–170 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  3. Hawking, S. W.: Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  4. Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., Leibundgut, B. R. U. N. O.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116(3), 1009 (1998)

    Article  ADS  Google Scholar 

  5. Riess, A. G., Kirshner, R. P., Schmidt, B. P., Jha, S., Challis, P., Garnavich, P. M., Esin, A. A., Carpenter, C., Grashius, R., Schild, R. E., Berlind, P. L.: BVRI Light curves for 22 type Ia supernovae. Astron. J. 117(2), 707 (1999)

    Article  ADS  Google Scholar 

  6. Spergel, D. N., Bean, R., Doré, O., Nolta, M. R., Bennett, C. L., Dunkley, J., Hinshaw, G., Jarosik, N. E., Komatsu, E., Page, L., Peiris, H. V.: Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmol-ogy. Astrophys. J. Suppl. Ser. 170(2), 377 (2007)

    Article  ADS  Google Scholar 

  7. Tegmark, M., Strauss, M.A., Blanton, M.R., Abazajian, K., Dodelson, S., Sandvik, H., Wang, X., Weinberg, D.H., Zehavi, I., Bahcall, N.A., Hoyle, F.: Cosmological parameters from SDSS and WMAP. Phys. Rev. D. 69(10), 103501 (2004)

    Article  ADS  Google Scholar 

  8. Blandford, R. D., Znajek, R. L.: Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179(13), 433–456 (1977)

    Article  ADS  Google Scholar 

  9. Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., Nugent, P., Castro, P. G., Deustua, S., Fabbro, S., Goobar, A., Groom, D. E., Hook, I. M.: Measurements of and from 42 high-redshift supernovae. Astrophys. J. 517(2), 565 (1999)

    Article  ADS  Google Scholar 

  10. Penrose, R., Floyd, R. M.: Extraction of rotational energy from a black hole. Nature 229(6), 177–179 (1971)

    ADS  Google Scholar 

  11. Bardeen, J. M., Carter, B., Hawking, S. W.: The four laws of black hole mechanics. Commun. Math. Phys. 31(2), 161–170 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hawking, S. W.: Gravitational radiation from colliding black holes. Phys. Rev. Lett. 26(21), 1344 (1971)

    Article  ADS  Google Scholar 

  13. Hawking, S. W.: Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  14. Hartle, J. B., Hawking, S. W.: Wave function of the universe. Phys. Rev. D. 28(12), 2960 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  15. Jawad, A., Ali, F., Shahzad, M. U., Abbas, G.: Dynamics of particles around time conformal Schwarzschild black hole. Eur. Phys. J. C. 76(11), 586 (2016)

    Article  ADS  Google Scholar 

  16. Khan, A. S., Ali, F.: The dynamics of particles around time conformal AdS-Schwarzschild black hole. Phys. Dark. Universe. 26, 100389 (2019)

    Article  Google Scholar 

  17. Khan, I.A., Ali, F., Islam, S., Khan, A.S.: The role of the cosmological constant in dynamics of the particle in the Schwarzschild black hole. Phys. Scr. 95(6), 065003 (2020)

    Article  ADS  Google Scholar 

  18. Senovilla, J. M.: Singularity theorems and their consequences. Gen. Relativ. Gravit. 30(5), 701–748 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  19. Senovilla, J. M.: Trapped surfaces. Int. J. Mod. Phys. Conf. Ser. 7, 1 (2012)

    Article  MathSciNet  Google Scholar 

  20. Bengtsson, I., Senovilla, J.M.: Region with trapped surfaces in spherical symmetry, its core, and their boundaries. Phys. Rev. D. 83(4), 044012 (2011)

    Article  ADS  Google Scholar 

  21. Senovilla, J. M.: Trapped surfaces, horizons and exact solutions in higher dimensions. Class. Quantum Grav. 19(12), 113 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  22. Damour, T.: Th‘ese de Doctorat d’Etat, Universit’e de Paris VI, January 1979. In: R. Ruffini (ed.) Proceedings of the Second Marcel Grossmann Meeting on General Relativity. North Holland, Amsterdam, pp 587–608 (1982)

  23. Custodio, P. S., Horvath, J. E.: Thermodynamics of black holes in a finite box. Am. J. Phys. 71(12), 1237–1241 (2003)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amir Sultan Khan or Israr Ali Khan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.S., Ali, F. & Khan, I.A. The Thermodynamics of the Perturbed Schwarzschild Black Hole. Int J Theor Phys 59, 2214–2222 (2020). https://doi.org/10.1007/s10773-020-04497-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04497-y

Keywords

Navigation