Skip to main content

Advertisement

Log in

An open-source Simulink-based program for simulating power systems integrated with renewable energy sources

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents an open-source Simulink-based program developed for simulating power systems integrated with renewable energy sources (RESs). The generic model of a photovoltaic, wind turbine, and battery energy storage is used for the RES. The program can be used for educational and research studies. It comes with several important subjects in power systems including power system modeling and integration, linearization, modal analysis, participation factor analysis, controller selection using residue analysis, and frequency response analysis. IEEE 68-bus dynamic test system is used to verify the performance of the program. The results show the efficiency and speed of the program to simulate a large-scale modern power system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. https://www.dropbox.com/s/2s83t0octnjsipx/ProgramsPVFinalToBeSubmitted.zip?dl=0

  2. https://www.dropbox.com/s/vd64m4fa0iobxfv/PV_ToBeSubmitted.mp4?dl=0

  3. Pourbeik P (2015) Model user guide for generic renewable energy system models. EPRI technical update

  4. Lammert G, Ospina LDP, Pourbeik P, Fetzer D, Braun M (2016) Implementation and validation of WECC generic photovoltaic system models in DIgSILENT PowerFactory. In: 2016 IEEE power and energy society general meeting (PESGM), Boston, MA, pp 1–5

  5. Pourbeik P (2014) WECC second-generation wind turbine models, Electric Power Research Institute, Knoxville, TN

  6. Update Technical (2013) Generic models and model validation for wind turbine generators and photovoltaic generation. EPRI, Palo Alto

    Google Scholar 

  7. Generic models and model validation for wind and solar PV generation: technical update. EPRI, Palo Alto, 2011, 1021763

  8. Vanfretti L, Milano F (2008) The experience of PSAT (power system analysis toolbox) as a free and open source software for power system education and research. Int J Electr Eng Educ (IJEEE) 47:47–62

    Article  Google Scholar 

  9. Cole S, Belmans R (2011) MatDyn, a new Matlab-based toolbox for power system dynamic simulation. IEEE Trans Power Syst 26(3):1129–1136

    Article  Google Scholar 

  10. Abdulrahman I (2020) MATLAB-based programs for power system dynamic analysis. IEEE Open Access J Power Energy 7:59–69

    Article  Google Scholar 

  11. Abdulrahman I, Belkacemi R, Radman G (2019) Power oscillations damping using wide-area-based solar plant considering adaptive time-delay compensation. J Energy Syst. https://link.springer.com/article/10.1007%2Fs12667-019-00350-2

  12. Abdulrahman I, Radman G (2019) Simulink-based programs for power system dynamic analysis. J Electr Eng 10:345–356

    Article  Google Scholar 

  13. Islam MR, Rahman F, Xu W (2016) Green energy and technology: advances in solar photovoltaic power plants. Springer, Berlin

    Google Scholar 

  14. Pourbeik P et al (2017) Generic dynamic models for modeling wind power plants and other renewable technologies in large-scale power system studies. IEEE Trans Energy Convers 32(3):1108–1116

    Article  Google Scholar 

  15. Sauer P, Pai MA, Chow JH (2017) Power system dynamics and stability, 2nd edn. Wiley IEEE Press, Hoboken

    Google Scholar 

  16. Zimmerman RD, Murillo-Sánchez CE, Thomas RJ (2011) MATPOWER: steady-state operations, planning and analysis tools for power systems research and education. IEEE Trans Power Syst 26(1):12–19

    Article  Google Scholar 

  17. Abdulrahman I, Radman G (2018) Wide-area-based adaptive neuro-fuzzy SVC controller for damping interarea oscillations. Can J Electr Comput Eng 41(3):133–144

    Google Scholar 

  18. Pal B, Chaudhuri B (2005) Robust control in power system. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Abdulrahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author would like to share the program publicly (open source). The link to the files can be obtained from [1]. A short video was created while running the program and is available in [2].

Appendices

Appendix 1: Abbreviations

\( R_{\text{s}} \)

Stator resistance in pu

\( X_{d} \)

d-axis reactance in pu

\( X_{d}^{ '} \)

Transient d-axis reactance in pu

\( X_{d}^{\prime \prime } \)

Sub-transient d-axis reactance in pu

\( X_{q} \)

q-axis reactance in pu

\( X_{q}^{ '} \)

Transient q-axis reactance in pu

\( X_{q}^{\prime \prime } \)

Sub-transient q-axis reactance in pu

\( H \)

Shaft inertia constant in s

\( w_{\text{s}} \)

Generator synchronous speed in rad per second

\( T_{do}^{'} \)

d-axis time constant associated with \( E_{q}^{ '} \) in second

\( T_{do}^{''} \)

d-axis time constant associated with \( \varPsi_{1d} \) in second

\( T_{qo}^{'} \)

q-axis time constant associated with \( E_{d}^{ '} \) in second

\( T_{qo}^{''} \)

q-axis time constant associated with \( \varPsi_{2q} \) in second

\( T_{\text{A}} \)

Amplifier time constant in s

\( T_{\text{CH}} \)

Incremental steam chest time constant in s

\( T_{\text{SV}} \)

Steam valve time constant in s

\( K_{\text{A}} \)

Amplifier gain

\( K_{\text{E}} \)

Separate or self-excited constant

\( E_{q}^{ '} \)

q-axis transient internal voltages in pu

\( E_{d}^{ '} \)

d-axis transient internal voltages in pu

\( E \)

Internal voltage in pu

\( \varPsi_{1d} \)

Damper winding 1d flux linkages in pu

\( \varPsi_{2q} \)

Damper winding 2q flux linkages in pu

\( \delta \)

Rotor angle in rad

\( w \)

Angular speed of generator in rad per second

\( \bar{V}_{i} \)

Complex voltage phasor

\( V \)

Magnitude of bus voltage in pu

\( \theta \)

Angle of bus voltage in rad

\( \bar{I}_{Gi} \)

Generator complex current phasor

\( I_{Gi} \)

Generator current magnitude in pu

\( \gamma_{i} \)

Generator current angle in rad

\( I_{d} \)

d-axis current in pu

\( I_{q} \)

q-axis current in pu

\( \alpha_{ik} \)

Angle of admittance \( Y_{ik} \) in rad

\( E_{fd} \)

Field voltage in pu

\( V_{R} \)

Exciter input in pu

\( R_{\text{F}} \)

Rate feedback in pu

\( T_{\text{M}} \)

Mechanical input torque in pu

\( P_{\text{SV}} \)

Steam valve position in pu

\( P_{\text{C}} \)

Control power input in pu

\( R_{\text{D}} \)

Speed regulation quantity in Hz/pu

\( V_{\text{ref}} \)

Reference voltage input in pu

\( S_{\text{E}} \)

Saturation function

\( T_{\text{FW}} \)

Frictional windage torques

Appendix 2: Dynamic equations of the system

  1. 1.

    Synchronous generators

    $$ T_{doi}^{ '} \frac{{{\text{d}}E_{qi}^{ '} }}{{{\text{d}}t}} = - E_{qi}^{ '} - \left( {X_{di} - X_{di}^{ '} } \right)\left[ {I_{di} - \frac{{\left( {X_{di}^{ '} - X_{di}^{\prime \prime } } \right)}}{{\left( {X_{di}^{ '} - X_{ls} } \right)^{2} }}\left( {\varPsi_{1di} + \left( {X_{di}^{ '} - X_{ls} } \right)I_{di} - E_{qi}^{ '} } \right)} \right] + E_{fd} $$
    (10)
    $$ T_{doi}^{''} \frac{{{\text{d}}\varPsi_{1di} }}{{{\text{d}}t}} = - \varPsi_{1di} + E_{qi}^{'} - \left( {X_{di}^{'} - X_{ls} } \right)I_{di} $$
    (11)
    $$ T_{qoi}^{ '} \frac{{{\text{d}}E_{di}^{ '} }}{{{\text{d}}t}} = - E_{di}^{ '} + \left( {X_{qi} - X_{qi}^{ '} } \right)\left[ {I_{qi} - \frac{{\left( {X_{qi}^{ '} - X_{qi}^{\prime \prime } } \right)}}{{\left( {X_{qi}^{ '} - X_{ls} } \right)^{2} }}\left( {\varPsi_{2qi} + \left( {X_{qi}^{ '} - X_{ls} } \right)I_{qi} + E_{di}^{ '} } \right)} \right] $$
    (12)
    $$ T_{qoi}^{\prime \prime } \frac{{{\text{d}}\varPsi_{2qi} }}{{{\text{d}}t}} = - \varPsi_{2qi} - E_{di}^{ '} - \left( {X_{qi}^{ '} - X_{ls} } \right)I_{qi} $$
    (13)
    $$ \frac{{{\text{d}}\delta_{i} }}{{{\text{d}}t}} = w_{i} - w_{s} $$
    (14)
    $$ \begin{aligned} \frac{{2H_{i} }}{{w_{s} }}\frac{{{\text{d}}w_{i} }}{{{\text{d}}t}} & = T_{Mi} - \frac{{X_{di}^{''} - X_{ls} )}}{{\left( {X_{di}^{'} - X_{ls} } \right)}}E_{qi}^{'} I_{qi} - \frac{{\left( {X_{di}^{'} - X_{di}^{''} } \right)}}{{\left( {X_{di}^{'} - X_{ls} } \right)}}\varPsi_{1di} I_{qi} \\ & \quad - \,\frac{{\left( {X_{qi}^{''} - X_{ls} } \right)}}{{\left( {X_{qi}^{'} - X_{ls} } \right)}}E_{di}^{'} I_{di} + \frac{{\left( {X_{qi}^{'} - X_{qi}^{''} } \right)}}{{\left( {X_{qi}^{'} - X_{ls} } \right)}}\varPsi_{2qi} I_{di} \\ & \quad - \,\left( {X_{qi}^{''} - X_{di}^{''} } \right)I_{di} I_{qi} - T_{FW} \\ \end{aligned} $$
    (15)
  2. 2.

    Excitation systems (IEEE type I)

    $$ T_{Ei} \frac{{{\text{d}}E_{fdi} }}{{{\text{d}}t}} = - \left( {K_{Ei} + S_{Ei} \left( {E_{fdi} } \right)} \right)E_{fdi} + V_{Ri} $$
    (16)
    $$ T_{Fi} \frac{{{\text{d}}R_{fi} }}{{{\text{d}}t}} = - R_{fi} + \frac{{K_{fi} }}{{T_{fi} }}E_{fdi} $$
    (17)
    $$ \begin{aligned} T_{Ai} \frac{{{\text{d}}V_{Ri} }}{{{\text{d}}t}} & = - V_{Ri} + K_{Ai} R_{fi} \\ & \quad - \,\frac{{K_{Ai} K_{fi} }}{{T_{fi} }}E_{fdi} + K_{Ai} \left( {V_{{{\text{ref}}i}} - V_{i} } \right) \\ \end{aligned} $$
    (18)
  3. 3.

    Turbine systems

    $$ T_{{{\text{CH}}i}} \frac{{{\text{d}}T_{{{\text{M}}i}} }}{{{\text{d}}t}} = - T_{{{\text{M}}i}} + P_{{{\text{SV}}i}} $$
    (19)
    $$ T_{{{\text{SV}}i}} \frac{{{\text{d}}P_{{{\text{SV}}i}} }}{{{\text{d}}t}} = - P_{{{\text{SV}}i}} + P_{Ci} - \frac{1}{{R_{Di} }}\left( {\frac{{w_{i} }}{{w_{s} }} - 1} \right) $$
    (20)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulrahman, I. An open-source Simulink-based program for simulating power systems integrated with renewable energy sources. Electr Eng 102, 2181–2192 (2020). https://doi.org/10.1007/s00202-020-01022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01022-6

Keywords

Navigation