Skip to main content

Advertisement

Log in

Facile Construction of Synergistic β-Glucosidase and Cellulase Sequential Co-immobilization System for Enhanced Biomass Conversion

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Converting renewable cellulose into glucose via cellulase catalysis for further production of biofuel has been recognized as one of the most promising ways for solving energy crisis. However, the hydrolysis performance of immobilized cellulase was not satisfactory for practical application due to the reduced catalytic efficiency and lack of β-glucosidase (BG) component in cellulase. Here, a facile method was developed to sequentially co-immobilize BG and cellulase by polymeric microparticles with hierarchical structure. In this strategy, BG was firstly entrapped into the cross-linked poly(ethylene glycol) (PEG) microparticles via inverse emulsion polymerization initiated by isopropyl thioxanthone (ITX) under the irradiation of visible light, leaving the formed ITX semi-pinacol (ITXSP) dormant groups on surface of BG-loaded microparticles, which could be further activated by visible light irradiation and initiated a graft polymerization to introduce poly(acrylic acid) (PAA) brush on the PEG core. After that, cellulase was covalently bonded on the PAA chains via carbodiimide reaction. The synergic effect of BG and cellulase was verified in the dual enzyme immobilization system, which led to a better stability at a wide range of temperature and pH than free enzymes. The dual enzymes system exhibited excellent reusability, which could retain 75% and 57% of the initial activity after 10 cycles of hydrolysis of carboxyl methyl cellulose and 5 cycles of hydrolysis of filter paper, respectively, indicative of the potential in biofuel areas in a cost-effective manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen, X. J.; Wen, J. L.; Mei, Q. Q.; Chen, X.; Sun, D.; Yuan, T. Q.; Sun, R. C. Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chem.2019, 21, 275–283.

    CAS  Google Scholar 

  2. Alonso, D. M.; Bond, J. Q.; Dumesic, J. A. Catalytic conversion of biomass to biofuels. Green Chem.2010, 12, 1493–1513.

    CAS  Google Scholar 

  3. Bugg, T. D. H.; Rahmanpour, R. Enzymatic conversion of lignin into renewable chemicals. Curr. Opin. Chem. Biol.2015, 29, 10–17.

    CAS  PubMed  Google Scholar 

  4. Dutta, S.; Wu, K. C. W. Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green Chem.2014, 16, 4615–4626.

    CAS  Google Scholar 

  5. Gupta, V. K.; Kubicek, C. P.; Berrin, J. G.; Wilson, D. W.; Couturier, M.; Berlin, A.; Filho, E. X. F.; Ezeji, T. Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem. Sci.2016, 41, 633–645.

    CAS  PubMed  Google Scholar 

  6. Srivastava, N.; Srivastava, M.; Mishra, P. K.; Gupta, V. K.; Molina, G.; Rodriguez-Couto, S.; Manikanta, A.; Ramteke, P. W. Applications of fungal cellulases in biofuel production: advances and limitations. Renew. Sust. Energ. Rev.2018, 82, 2379–2386.

    CAS  Google Scholar 

  7. Peng, H.; Rübsam, K.; Jakob, F.; Schwaneberg, U.; Pich, A. Tunable enzymatic activity and enhanced stability of cellulase immobilized in biohybrid nanogels. Biomacromolecules2016, 17, 3619–3631.

    CAS  PubMed  Google Scholar 

  8. Shanmugam, S.; Ngo, H. H.; Wu, Y. R. Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production: a review. Renew. Energ.2020, 149, 1107–1119.

    CAS  Google Scholar 

  9. Payne, C. M.; Knott, B. C.; Mayes, H. B.; Hansson, H.; Himmel, M. E.; Sandgren, M.; Ståhlberg, J.; Beckham, G. T. Fungal cellulases. Chem. Rev.2015, 115, 1308–1448.

    CAS  PubMed  Google Scholar 

  10. Rodrigues, R. C.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Fernández-Lafuente, R. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev.2013, 42, 6290–6307.

    CAS  PubMed  Google Scholar 

  11. Mackenzie, K. J.; Francis, M. B. Recyclable thermoresponsive polymer-cellulase bioconjugates for biomass depolymerization. J. Am. Chem. Soc.2013, 135, 293–300.

    CAS  PubMed  Google Scholar 

  12. Han, J.; Wan, J.; Wang, Y.; Wang, L.; Li, C.; Mao, Y.; Ni, L. Recyclable soluble-insoluble upper critical solution temperature-type poly(methacrylamide-co-acrylic acid)-cellulase biocatalyst for hydrolysis of cellulose into glucose. ACS Sustain. Chem. Eng.2018, 6, 7779–7788.

    CAS  Google Scholar 

  13. Saini, J. K.; Patel, A. K.; Adsul, M.; Singhania, R. R. Cellulase adsorption on lignin: a roadblock for economic hydrolysis of biomass. Renew. Energ.2016, 98, 29–42.

    CAS  Google Scholar 

  14. Tully, J.; Yendluri, R.; Lvov, Y. Halloysite clay nanotubes for enzyme immobilization. Biomacromolecules2016, 17, 615–621.

    CAS  PubMed  Google Scholar 

  15. Kamat, R. K.; Zhang, Y.; Anuganti, M.; Ma, W.; Noshadi, I.; Fu, H.; Ekatan, S.; Parnas, R.; Wang, C.; Kumar, C. V.; Lin, Y. Enzymatic activities of polycatalytic complexes with nonprocessive cellulases immobilized on the surface of magnetic nanoparticles. Langmuir2016, 32, 11573–11579.

    CAS  PubMed  Google Scholar 

  16. Qi, B.; Luo, J.; Wan, Y. Immobilization of cellulase on a core-shell structured metal-organic framework composites: better inhibitors tolerance and easier recycling. Bioresour. Technol.2018, 268, 577–582.

    CAS  PubMed  Google Scholar 

  17. Cho, E. J.; Jung, S.; Kim, H. J.; Lee, Y. G.; Nam, K. C.; Lee, H. J.; Bae, H. J. Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose. Chem. Commun.2012, 48, 886–888.

    CAS  Google Scholar 

  18. Limadinata, P. A.; Li, A.; Li, Z. Temperature-responsive nanobiocatalysts with an upper critical solution temperature for high performance biotransformation and easy catalyst recycling: efficient hydrolysis of cellulose to glucose. Green Chem.2015, 17, 1194–1203.

    CAS  Google Scholar 

  19. Ng, I. S.; Tsai, S. W.; Ju, Y. M.; Yu, S. M.; Ho, T. D. Dynamic synergistic effect on Trichoderma reesei cellulases by novel β-glucosidases from Taiwanese fungi. Bioresour. Technol.2011, 102, 6073–6081.

    CAS  PubMed  Google Scholar 

  20. Chávez-Guerrero, L.; Silva-Mendoza, J.; Sepúlveda-Guzmán, S.; Medina-Aguirre, N. A.; Vazquez-Rodriguez, S.; Cantú-Cárdenas, M. E.; García-Gómez, N. A. Enzymatic hydrolysis of cellulose nanoplatelets as a source of sugars with the concomitant production of cellulose nanofibrils. Carbohyd. Polym.2019, 210, 85–91.

    Google Scholar 

  21. Hsieh, C. W. C.; Cannella, D.; Jørgensen, H.; Felby, C.; Thygesen, L. G. Cellulase inhibition by high concentrations of monosaccharides. J. Agric. Food. Chem.2014, 62, 3800–3805.

    CAS  PubMed  Google Scholar 

  22. Teugjas, H.; Väljamäe, P. Selecting β-glucosidases to support cellulases in cellulose saccharification. Biotechnol. Biofuels2013, 6, 105.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Borges, D. G.; Baraldo Junior, A.; Farinas, C. S.; de Lima Camargo Giordano, R.; Tardioli, P. W. Enhanced saccharification of sugarcane bagasse using soluble cellulase supplemented with immobilized β-glucosidase. Bioresour. Technol.2014, 167, 206–213.

    CAS  PubMed  Google Scholar 

  24. Pallapolu, V. R.; Lee, Y. Y.; Garlock, R. J.; Balan, V.; Dale, B. E.; Kim, Y.; Mosier, N. S.; Ladisch, M. R.; Falls, M.; Holtzapple, M. T.; Sierra-Ramirez, R.; Shi, J.; Ebrik, M. A.; Redmond, T.; Yang, B.; Wyman, C. E.; Donohoe, B. S.; Vinzant, T. B.; Elander, R. T.; Hames, B.; Thomas, S.; Warner, R. E. Effects of enzyme loading and β-glucosidase supplementation on enzymatic hydrolysis of switchgrass processed by leading pretreatment technologies. Bioresour. Technol.2011, 102, 11115–11120.

    CAS  PubMed  Google Scholar 

  25. Liu, J.; Cao, X. Biodegradation of cellulose by β-glucosidase and cellulase immobilized on a pH-responsive copolymer. Biotechnol. Bioproc. E.2014, 19, 829–837.

    CAS  Google Scholar 

  26. Chakrabarti, A. C.; Storey, K. B. Enhanced glucose production from cellulose using coimmobilized cellulase and β-glucosidase. Appl. Biochem. Biotech.1989, 22, 263–278.

    CAS  Google Scholar 

  27. Storey, K. B.; Chakrabarti, A. C. One-step conversion of cellulose to fructose using coimmobilized cellulase, β-glucosidase, and glucose isomerase. Appl. Biochem. Biotech.1990, 23, 139–154.

    CAS  Google Scholar 

  28. Wang, Y.; Qi, Y.; Chen, C.; Zhao, C.; Ma, Y.; Yang, W. Layered coimmobilization of β-glucosidase and cellulase on polymer film by visible-light-induced graft polymerization. ACS Appl. Mater. Interfaces2019, 47, 44913–44921.

    Google Scholar 

  29. Figueira, J. A.; Sato, H. L. H.; Fernandes, P. Establishing the feasibility of using β-glucosidase entrapped in Lentikats and in sol-gel supports for cellobiose hydrolysis. J. Agric. Food. Chem.2013, 61, 626–634.

    CAS  PubMed  Google Scholar 

  30. Tu, M.; Zhang, X.; Kurabi, A.; Gilkes, N.; Mabee, W.; Saddler, J. Immobilization of β-glucosidase on Eupergit C for lignocellulose hydrolysis. Biotechnol. Lett.2006, 28, 151–156.

    CAS  PubMed  Google Scholar 

  31. Javed, M. R.; Buthe, A.; Rashid, M. H.; Wang, P. Cost-efficient entrapment of β-glucosidase in nanoscale latex and silicone polymeric thin films for use as stable biocatalysts. Food Chem.2016, 190, 1078–1085.

    CAS  PubMed  Google Scholar 

  32. Wang, G.; Chen, D.; Zhang, L.; Wang, Y.; Zhao, C.; Yan, X.; He, B.; Ma, Y.; Yang, W. A mild route to entrap papain into cross-linked PEG microparticles via visible light-induced inverse emulsion polymerization. J. Mater. Sci.2018, 53, 880–891.

    CAS  Google Scholar 

  33. Chang, R. H. Y.; Jang, J.; Wu, K. C. W. Cellulase immobilized mesoporous silica nanocatalysts for efficient cellulose-to-glucose conversion. Green Chem.2011, 13, 2844–2850.

    CAS  Google Scholar 

  34. Zhang, Y.; Xu, J.; Yuan, Z.; Xu, H.; Yu, Q. Artificial neural network-genetic algorithm based optimization for the immobilization of cellulase on the smart polymer Eudragit L-100. Bioresour. Technol.2010, 101, 3153–3158.

    CAS  PubMed  Google Scholar 

  35. Ghose, T. Measurement of cellulase activities. Pure Appl. Chem.1987, 59, 257–268.

    CAS  Google Scholar 

  36. Zang, L.; Qiu, J.; Wu, X.; Zhang, W.; Sakai, E.; Wei, Y. Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind. Eng. Chem. Res.2014, 53, 3448–3454.

    CAS  Google Scholar 

  37. Yang, P.; Yang, W. Surface chemoselective phototransformation of C―H bonds on organic polymeric materials and related hightech applications. Chem. Rev.2013, 113, 5547–5594.

    CAS  PubMed  Google Scholar 

  38. Wang, G.; Zhang, K.; Wang, Y.; Zhao, C.; He, B.; Ma, Y.; Yang, W. Decorating an individual living cell with a shell of controllable thickness by cytocompatible surface initiated graft polymerization. Chem. Commun.2018, 54, 4677–4680.

    CAS  Google Scholar 

  39. He, B.; Zhu, X.; Zhao, C.; Ma, Y.; Yang, W. Sequential coimmobilization of β-glucosidase and yeast cells on single polymer support for bioethanol production. Sci. China Chem.2018, 61, 1600–1608.

    CAS  Google Scholar 

  40. Burugapalli, K.; Bhatia, D.; Koul, V.; Choudhary, V. Interpenetrating polymer networks based on poly(acrylic acid) and gelatin. I: Swelling and thermal behavior. J. Appl. Polym. Sci.2001, 82, 217–227.

    CAS  Google Scholar 

  41. Cheng, Z.; Wu, C.; Yang, W.; Xu, T. Preparation of bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) hollow fiber cation-exchange membranes and immobilization of cellulase thereon. J. Membr. Sci.2012, 358, 93–100.

    Google Scholar 

  42. Zhu, X.; Ma, Y.; Zhao, C.; Lin, Z.; Zhang, L.; Chen, R.; Yang, W. A mild strategy to encapsulate enzyme into hydrogel layer grafted on polymeric substrate. Langmuir2014, 30, 15229–15237.

    CAS  PubMed  Google Scholar 

  43. Romano, E. J.; Schulz, K. H. A XPS investigation of SO2 adsorption on ceria-zirconia mixed-metal oxides. Appl. Surf. Sci.2005, 246, 262–270.

    CAS  Google Scholar 

  44. Chen, Y.; Gao, Y.; da Silva, L. P.; Pirraco, R. P.; Ma, M.; Yang, L.; Reis, R. L.; Chen, J. A thermo-/pH-responsive hydrogel (PNIPAM-PDMA-PAA) with diverse nanostructures and gel behaviors as a general drug carrier for drug release. Polym. Chem.2018, 9, 4063–4072.

    CAS  Google Scholar 

  45. Aulich, D.; Hoy, O.; Luzinov, I.; Eichhorn, K. J.; Stamm, M.; Gensch, M.; Schade, U.; Esser, N.; Hinrichs, K. In-situ IR synchrotron mapping ellipsometry on stimuli-responsive PAA-b-PS/PEG mixed polymer brushes. Phys. Status Solidi C2010, 7, 197–199.

    CAS  Google Scholar 

  46. Xu, W.; Sun, Z.; Meng, H.; Han, Y.; Wu, J.; Xu, J.; Xu, Y.; Zhang, X. Immobilization of cellulase proteins on zeolitic imidazolate framework (ZIF-8)/polyvinylidene fluoride hybrid membranes. New J. Chem.2018, 42, 17429–17438.

    CAS  Google Scholar 

  47. Liu, X.; Fang, Y.; Yang, X.; Li, Y.; Wang, C. Electrospun nanofibrous membranes containing epoxy groups and hydrophilic polyethylene oxide chain for highly active and stable covalent immobilization of lipase. Chem. Eng. J.2018, 336, 456–464.

    CAS  Google Scholar 

  48. Gokhale, A. A.; Lu, J.; Lee, I. Immobilization of cellulase on magnetoresponsive graphene nano-supports. J. Mol. Catal. B: Enzym.2013, 90, 76–86.

    CAS  Google Scholar 

  49. Li, C.; Yoshimoto, M.; Fukunaga, K.; Nakao, K. Characterization and immobilization of liposome-bound cellulase for hydrolysis of insoluble cellulose. Bioresour. Technol.2007, 98, 1366–1372.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51873014, 51521062, and 51473015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-Wen Zhao or Wan-Tai Yang.

Electronic Supplementary Information

10118_2020_2437_MOESM1_ESM.pdf

Facile Construction of Synergistic β-Glucosidase and Cellulase Sequential Co-immobilization System for Enhanced Biomass Conversion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zhang, K., Xin, JY. et al. Facile Construction of Synergistic β-Glucosidase and Cellulase Sequential Co-immobilization System for Enhanced Biomass Conversion. Chin J Polym Sci 38, 1277–1285 (2020). https://doi.org/10.1007/s10118-020-2437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2437-3

Keywords

Navigation