Skip to main content
Log in

Spatio-temporal hazard estimation in the central silicic part of Taupo Volcanic Zone, New Zealand, based on small to medium volume eruptions

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We explore how volcanic hazards in a silicic volcanism-dominated caldera systems can be assessed by spatial and spatio-temporal statistical models using similar treatment to that applied to dispersed mafic monogenetic volcanic fields. The central part of the Taupo Volcanic Zone is an ideal location for such study, containing more than 300 small to medium volume eruptions identified as having occurred in the past 350 kyr. The spatial distribution of vents with respect to the location of faults indicates a very strong local tectonic control on new vent openings, which commonly manifests in eruptions characterized by fissure vents. Kernel density estimates, along with the migration of volcanic foci in the last 100 kyr, suggest the bipartition of the caldera system activity, separated by an approximately 20 km wide vent-free section of the Taupo rift between the Waikato River and the southern extent of the Kapenga caldera. The heterogeneity in the spatial pattern of vents in the vicinity of different calderas suggests that the caldera structures themselves exert considerable infuence on the location of post-caldera volcanism. The spatio-temporal analysis fails to identify a local maxima of spatio-temporal intensity corresponding to post-Oruanui volcanism of Taupo volcano, in contrast to that observed at Maroa and Okataina Volcanic Centres. This deficit of events indicates that the Taupo caldera system is behaving atypically, relative to the post-caldera stage of other calderas of the Taupo Volcanic Zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acocella V (2007) Understanding caldera structure and development: an overview of analogue models compared to natural calderas. Earth Sci Rev 85(3–4):125–160

    Google Scholar 

  • Acocella V, Korme T, Salvini F, Funiciello R (2003a) Elliptic calderas in the Ethiopian rift: control of pre-existing structures. J Volcanol Geotherm Res 119(1–4):189–203

    Google Scholar 

  • Acocella V, Spinks KD, Cole JW, Nicol A (2003b) Oblique back arc rifting of Taupo Volcanic Zone, New Zealand. Tectonics 22(4)

  • Acocella V, Palladino D, Cioni R, Russo P, Simei S (2012) Caldera structure, amount of collapse, and erupted volumes: the case of Bolsena caldera, Italy. Bulletin 124(9–10):1562–1576

    Google Scholar 

  • Ashwell PA, Kennedy BM, Gravley DM, von Aulock FW, Cole JW (2013) Insights into caldera and regional structures and magma body distribution from lava domes at Rotorua Caldera, New Zealand. J Volcanol Geotherm Res 258:187–202

    Google Scholar 

  • Ashwell PA, Kennedy BM, Edwards M, Cole JW (2018) Characteristics and consequences of lava dome collapse at Ruawahia, Taupo Volcanic Zone, New Zealand. Bull Volcanol 80(5):43

    Google Scholar 

  • Bailey RA (1989) Geologic map of Long Valley caldera. Mono-Inyo Craters volcanic chain, and vicinity, eastern California: US Geological Survey Miscellaneous Investigations Map I-1933, scale, 1(62,500):11

  • Barker S, Wilson CJN, Smith EG, Charlier B, Wooden JL, Hiess J, Ireland T (2014) Post-supereruption magmatic reconstruction of Taupo volcano (New Zealand), as reflected in zircon ages and trace elements. J Petrol 55(8):1511–1533

    Google Scholar 

  • Bebbington MS (2013) Assessing spatio-temporal eruption forecasts in a monogenetic volcanic field. J Volcanol Geotherm Res 252:14–28

    Google Scholar 

  • Bebbington MS (2015) Spatio-volumetric hazard estimation in the Auckland volcanic field. Bull Volcanol 77(5):1–15

    Google Scholar 

  • Bebbington MS, Cronin SJ (2011) Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. Bull Volcanol 73(1):55–72

    Google Scholar 

  • Bebbington MS, Lai CD (1996) Statistical analysis of New Zealand volcanic occurrence data. J Volcanol Geotherm Res 74:101–110

    Google Scholar 

  • Bebbington MS, Stirling MW, Cronin SJ, Wang T, Jolly G (2018) National-level long-term eruption forecasts by expert elicitation. Bull Volcanol 80(6):56

    Google Scholar 

  • Becerril L, Cappello A, Galindo I, Neri M, Del Negro C (2013) Spatial probability distribution of future volcanic eruptions at El Hierro Island (Canary Islands, Spain). J Volcanol Geotherm Res 257:21–30

    Google Scholar 

  • Bevilacqua A, Bursik M, Patra A, Pitman EB, Till R (2017) Bayesian construction of a long-term vent opening probability map in the Long Valley volcanic region (CA, USA). Statistics in Volcanology 3(1):1–36

    Google Scholar 

  • Bibby H, Caldwell T, Davey F, Webb T (1995) Geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation. J Volcanol Geotherm Res 68(1–3):29–58

    Google Scholar 

  • Branney MJ (1995) Downsag and extension at calderas: new perspectives on collapse geometries from ice-melt, mining, and volcanic subsidence. Bull Volcanol 57(5):303–318

    Google Scholar 

  • Brothelande E, Merle O (2015) Estimation of magma depth for resurgent domes: an experimental approach. Earth Planet Sci Lett 412:143–151

    Google Scholar 

  • Brown S, Smith R, Cole JW, Houghton BF (1994) Compositional and textural characteristics of the strombolian and surtseyan K-Trig basalts, Taupo Volcanic Centre, New Zealand: implications for eruption dynamics. New Zeal J Geol Geophys 37(1):113–126

    Google Scholar 

  • Brown SK, Crosweller HS, Sparks RSJ, Cottrell E, Deligne NI, Guerrero NO, Hobbs L, Kiyosugi K, Loughlin SC, Siebert L, Takarada S (2014) Characterisation of the quaternary eruption record: analysis of the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database. J Appl Volcanol 3(1):5

    Google Scholar 

  • Cappello A, Neri M, Acocella V, Gallo G, Vicari A, Del Negro C (2012) Spatial vent opening probability map of Etna volcano (Sicily, Italy). Bull Volcanol 74(9):2083–2094

    Google Scholar 

  • Cattell H (2015) Volcanic evolution of the Huka Group at Wairakei-Tauhara Geothermal Field, Taupo Volcanic Zone, New Zealand, Unpublished PhD thesis, University of Canterbury, Christchurch

  • Chambefort I, Lewis B, Wilson CJN, Rae A, Coutts C, Bignall G, Ireland T (2014) Stratigraphy and structure of the Ngatamariki geothermal system from new zircon U–Pb geochronology: implications for Taupo Volcanic Zone evolution. J Volcanol Geotherm Res 274:51–70

    Google Scholar 

  • Cole JW, Milner D, Spinks KD (2005) Calderas and caldera structures: a review. Earth Sci Rev 69(1):1–26

    Google Scholar 

  • Condit C, Connor CB (1996) Recurrence rates of volcanism in basaltic volcanic fields: an example from the Springerville volcanic field, Arizona. Geol Soc Am Bull 108(10):1225–1241

    Google Scholar 

  • Connor CB (1990) Cinder cone clustering in the trans-Mexican Volcanic Belt: implications for structural and petrologic models. J Geophys Res Solid Earth 95(B12):19395–19405

    Google Scholar 

  • Connor CB and Connor LJ (2009) Estimating spatial density with kernel methods. Cambridge University Press

  • Connor CB, Hill BE (1995) Three nonhomogeneous Poisson models for the probability of basaltic volcanism: application to the Yucca Mountain region, Nevada. J Geophys Res Solid Earth 100(B6):10107–10125

    Google Scholar 

  • Connor CB, Stamatakos JA, Ferrill DA, Hill BE, Ofoegbu GI, Conway FM, Sagar B, Trapp J (2000) Geologic factors controlling patterns of small-volume basaltic volcanism: application to a volcanic hazards assessment at Yucca Mountain, Nevada. J Geophys Res Solid Earth 105(B1):417–432

    Google Scholar 

  • Conway FM, Connor CB, Hill BE, Condit CD, Mullaney K, Hall CM (1998) Recurrence rates of basaltic volcanism in SP cluster, San Francisco volcanic field, Arizona. Geology 26(7):655–658

    Google Scholar 

  • Cronin SJ, Hedley M, Neall VE, Smith R (1998) Agronomic impact of tephra fallout from the 1995 and 1996 Ruapehu volcano eruptions, New Zealand. Environ Geol 34(1):21–30

    Google Scholar 

  • Cronin SJ, Bebbington MS, Lai CD (2001) A probabilistic assessment of eruption recurrence on Taveuni volcano, Fiji. Bull Volcanol 63(4):274–288

    Google Scholar 

  • Danišík M, Shane P, Schmitt AK, Hogg A, Santos GM, Storm S, Evans NJ, Fifield LK, Lindsay JM (2012) Re-anchoring the late Pleistocene tephrochronology of New Zealand based on concordant radiocarbon ages and combined 238 U/230 Th disequilibrium and (U–Th)/He zircon ages. Earth Planet Sci Lett 349:240–250

    Google Scholar 

  • Davey F (2010) Crustal seismic reflection measurements across the northern extension of the Taupo Volcanic Zone, North Island, New Zealand. J Volcanol Geotherm Res 190(1):75–81

    Google Scholar 

  • Davy B, Caldwell T (1998) Gravity, magnetic and seismic surveys of the caldera complex, Lake Taupo, North Island, New Zealand. J Volcanol Geotherm Res 81(1):69–89

    Google Scholar 

  • Deering CD, Gravley DM, Vogel TA, Cole JW, Leonard GS (2010) Origins of cold-wet-oxidizing to hot-dry-reducing rhyolite magma cycles and distribution in the Taupo volcanic zone, New Zealand. Contrib Mineral Petrol 160(4):609–629

    Google Scholar 

  • Downs DT, Rowland JV, Wilson CJN, Rosenberg MD, Leonard GS, Calvert AT (2014a) Evolution of the intra-arc Taupo-Reporoa Basin within the Taupo Volcanic Zone of New Zealand. Geosphere 10(1):185–206

    Google Scholar 

  • Downs DT, Wilson CJN, Cole JW, Rowland JV, Calvert AT, Leonard GS, Keall JM (2014b) Age and eruptive center of the Paeroa subgroup ignimbrites (Whakamaru Group) within the Taupo Volcanic Zone of New Zealand. Geol Soc Am Bull 126(9–10):1131–1144

    Google Scholar 

  • Duong T (2007) Ks: kernel density estimation and kernel discriminant analysis for multivariate data in R. J Stat Softw 21(7):1–16

    Google Scholar 

  • Duong T, Hazelton M (2003) Plug-in bandwidth selectors for bivariate kernel density estimation. Journal of Nonparametric Statistics 15:17–30

    Google Scholar 

  • Fink JH and Anderson SW (2017) Emplacement of Holocene silicic lava flows and domes at Newberry, South Sister, and Medicine Lake volcanoes, California and Oregon (No. 2017-5022-I). US Geological Survey

  • Foxall R, Baddeley A (2002) Nonparametric measures of association between a spatial point process and a random set, with geological applications. J R Stat Soc: Ser C: Appl Stat 51(2):165–182

    Google Scholar 

  • Froggatt PC, Lowe DJ (1990) A review of late Quaternary silicic and some other tephra formations from New Zealand: their stratigraphy, nomenclature, distribution, volume, and age. New Zeal J Geol Geophys 33(1):89–109

    Google Scholar 

  • Gamble J, Wright I, Baker J (1993) Seafloor geology and petrology in the oceanic to continental transition zone of the Kermadec-Havre-Taupo Volcanic Zone arc system, New Zealand. New Zeal J Geol Geophys 36(4):417–435

    Google Scholar 

  • Garlick RD, Hill A, Mitchell JS (1999) Lake Rotoaira Bathymetry 1 : 10000, NIWA Lake Chart Series, National Institute of Water and Atmospheric Research

  • Germa A, Connor LJ, Cañon-Tapia E, Le Corvec N (2013) Tectonic and magmatic controls on the location of post-subduction monogenetic volcanoes in Baja California, Mexico, revealed through spatial analysis of eruptive vents. Bull Volcanol 75(12):782

    Google Scholar 

  • Geyer A, Marti J (2008) The new worldwide collapse caldera database (CCDB): a tool for studying and understanding caldera processes. J Volcanol Geotherm Res 175(3):334–354

    Google Scholar 

  • Gravley DM, Wilson CJN, Leonard GS, Cole JW (2007) Double trouble: paired ignimbrite eruptions and collateral subsidence in the Taupo Volcanic Zone, New Zealand. Geol Soc Am Bull 119:18–30

    Google Scholar 

  • Gravley DM, Deering CD, Leonard GS, Rowland JV (2016) Ignimbrite flare-ups and their drivers: a New Zealand perspective. Earth Sci Rev 162:65–82

    Google Scholar 

  • Gregg PM, Grosfils EB, de Silva SL (2015) Catastrophic caldera-forming eruptions II: the subordinate role of magma buoyancy as an eruption trigger. J Volcanol Geotherm Res 305:100–113

    Google Scholar 

  • Grosse P, van Wyk de Vries B, Euillades PA, Kervyn M, Petrinovic IA (2012) Systematic morphometric characterization of volcanic edifices using digital elevation models. Geomorphology 136(1):114–131

    Google Scholar 

  • Gualda GA, Gravley DM, Connor M, Hollmann B, Pamukcu AS, Bégué F, Ghiorso MS, Deering CD (2018) Climbing the crustal ladder: magma storage-depth evolution during a volcanic flare-up. Sci Adv 4(10):eaap7567

    Google Scholar 

  • Harrison A and White R (2004) Crustal structure of the Taupo Volcanic Zone, New Zealand: stretching and igneous intrusion. Geophys Res Lett 31(13)

  • Heiken G, Wohletz K (1987) Tephra deposits associated with silicic domes and lava flows. Geol Soc Am Spec Pap 212:55–76

    Google Scholar 

  • Heiken G, Goff F, Gardner JN, Baldridge W, Hulen J, Nielson DL, Vaniman D (1990) The Valles/Toledo caldera complex, Jemez volcanic field, New Mexico. Annu Rev Earth Planet Sci 18(1):27–53

    Google Scholar 

  • Henrys S, Reyners M, Bibby H (2003) Exploring the plate boundary structure of the North Island. New Zealand Eos Trans AGU 84(31):289–295

    Google Scholar 

  • Holohan EP, van Wyk de Vries B, Troll VR (2008) Analogue models of caldera collapse in strike-slip tectonic regimes. Bull Volcanol 70(7):773–796

    Google Scholar 

  • Houghton BF, Lloyd EF, Wilson CJN, Lanphere MA (1991) K-Ar ages from the Western Dome Belt and associated rhyolitic lavas in the Maroa-Taupo srea, Taupo Volcanic Zone, New-Zealand. New Zeal J Geol Geophys 34(1):99–101

    Google Scholar 

  • Irwin J (1966) Lake Okataina, provisional bathymetry; 1:15840, Fish. Res. Div. Lake Series. New Zealand Marine Department, Wellington

  • Irwin J (1967) Lake Rotoma, Provisional Bathymetry 1:15840, Fish. Res. Div. Lake Series. New Zealand Marine Department, Wellington

  • Irwin J (1969a) Lake Rotorua, Provisional Bathymetry 1:15 840, Fish. Res. Div. Lake Series. New Zealand Marine Department, Wellington

  • Irwin J (1969b) Lake Tarawera, Provisional Bathymetry 1:25 000, Lake Chart Series. New Zealand Oceanographic Institute, Wellington

    Google Scholar 

  • Irwin J (1972) Lake Taupo Bathymetry 1:50 000, Lake Chart Series. New Zealand Oceanographic Institute, Wellington

    Google Scholar 

  • Irwin J (1982) Lake Rotomahana Bathymetry 1:9700, Lake Chart Series. New Zealand Oceanographic Institute, Wellington

    Google Scholar 

  • Irwin J and de Main WL (1982) Lake Rotoiti Bathymetry 1:15000, Lake Chart Series, New Zealand Oceanographic Institute, Wellington

  • Jaquet O, Lantejoul C, Goto J (2012) Probabilistic estimation of long-term volcanic hazard with assimilation of geophysics and tectonic data. J Volcanol Geotherm Res 235-236:29–36

    Google Scholar 

  • Johnston DM, Houghton BF, Neall VE, Ronan KR, Paton D (2000) Impacts of the 1945 and 1995–1996 Ruapehu eruptions, New Zealand: an example of increasing societal vulnerability. Geol Soc Am Bull 112(5):720–726

    Google Scholar 

  • Jurado-Chichay Z, Walker G (2000) Stratigraphy and dispersal of the Mangaone subgroup pyroclastic deposits, Okataina volcanic Centre, New Zealand. J Volcanol Geotherm Res 104(1):319–380

    Google Scholar 

  • Karlstrom L, Wright HM, Bacon CR (2015) The effect of pressurized magma chamber growth on melt migration and pre-caldera vent locations through time at Mount Mazama, Crater Lake, Oregon. Earth Planet Sci Lett 412:209–219

    Google Scholar 

  • Kiyosugi K, Connor CB, Zhao D, Connor LJ, Tanaka K (2010) Relationships between volcano distribution, crustal structure, and P-wave tomography: an example from the Abu Monogenetic Volcano Group, SW Japan. Bull Volcanol 72(3):331–340

    Google Scholar 

  • Kósik S (2018) Small-volume volcanism associated with polygenetic volcanoes, Taupo Volcanic Zone, New Zealand, Unpublished PhD thesis, Massey University

  • Kósik S, Németh K, Kereszturi G, Procter JN, Zellmer GF, Geshi N (2016) Phreatomagmatic and water-influenced Strombolian eruptions of a small-volume parasitic cone complex on the southern ringplain of Mt. Ruapehu, New Zealand: Facies architecture and eruption mechanisms of the Ohakune Volcanic Complex controlled by an unstable fissure eruption. J Volcanol Geotherm Res 327:99–115

    Google Scholar 

  • Kósik S, Németh K, Procter JN, Zellmer GF (2017) Maar-diatreme volcanism relating to the pyroclastic sequence of a newly discovered high-alumina basalt in the Maroa Volcanic Centre, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 341:363–370

    Google Scholar 

  • Kósik S, Németh K, Lexa J, Procter JN (2019) Understanding the evolution of a small-volume silicic fissure eruption: Puketerata Volcanic Complex, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 383:28–46

    Google Scholar 

  • Langridge R, Ries W, Litchfield N, Villamor P, Van Dissen R, Barrell D, Rattenbury M, Heron D, Haubrock S, Townsend D (2016) The New Zealand active faults database. New Zeal J Geol Geophys 59(1):86–96

    Google Scholar 

  • Latter JH (1985) Frequency of eruptions at New Zealand volcanoes. Bull NZ Natl Soc Earthquake Eng 18:55–101

    Google Scholar 

  • Le Corvec N, Spörli KB, Rowland JV, Lindsay JM (2013) Spatial distribution and alignments of volcanic centers: clues to the formation of monogenetic volcanic fields. Earth Sci Rev 124:96–114

    Google Scholar 

  • Leonard GS (2003) The evolution of Maroa Volcanic Centre, Taupo Volcanic Zone, New Zealand. Unpublished PhD thesis, University of Canterbury

  • Leonard GS, Cole JW, Nairn IA, Self S (2002) Basalt triggering of the c. AD 1305 Kaharoa rhyolite eruption, Tarawera volcanic complex. New Zealand J Volcanol Geoth Res 115(3):461–486

    Google Scholar 

  • Leonard GS, Begg JG, Wilson CJN (2010) Geology of the Rotorua area. Institute of Geological and Nuclear Sciences 1:250,000 geological map 5. Sheet + 102 p. Lower Hutt, New Zealand, GNS Science

  • Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry. Bull Volcanol 59(3):198–218

    Google Scholar 

  • Lowe DJ, Shane PA, Alloway BV, Newnham RM (2008) Fingerprints and age models for widespread New Zealand tephra marker beds erupted since 30,000 years ago: a framework for NZ-INTIMATE. Quat Sci Rev 27(1):95–126

    Google Scholar 

  • Lutz TM (1986) An analysis of the orientations of large-scale crustal structures: a statistical approach based on areal distributions of pointlike features. J Geophys Res Solid Earth 91(B1):421–434

    Google Scholar 

  • Lutz TM, Gutmann JT (1995) An improved method for determining and characterizing alignments of pointlike features and its implications for the Pinacate volcanic field, Sonora, Mexico. J Geophys Res Solid Earth 100(B9):17659–17670

    Google Scholar 

  • MacLeod NS, Sherrod DR, Chitwood LA (1982) Geologic map of Newberry Volcano, Deschutes, Klamath, and Lake counties. Oregon. 2331-1258

  • Maeno F, Taniguchi H (2006) Silicic lava dome growth in the 1934–1935 Showa Iwo-jima eruption, Kikai caldera, south of Kyushu, Japan. Bull Volcanol 68(7–8):673–688

    Google Scholar 

  • Magill C, McAneney K, Smith IEM (2005) Probabilistic assessment of vent locations for the next Auckland volcanic field event. Math Geol 37(3):227–242

    Google Scholar 

  • Manville V, Wilson CJN (2004) The 26.5 ka Oruanui eruption, New Zealand: a review of the roles of volcanism and climate in the post-eruptive sedimentary response. New Zeal J Geol Geophys 47(3):525–547

    Google Scholar 

  • Manville V, Németh K, Kano K (2009a) Source to sink: a review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sediment Geol 220(3):136–161

    Google Scholar 

  • Manville V, Segschneider B, Newton E, White JDL, Houghton BF, Wilson CJN (2009b) Environmental impact of the 1.8 ka Taupo eruption, New Zealand: landscape responses to a large-scale explosive rhyolite eruption. Sediment Geol 220(3–4):318–336

    Google Scholar 

  • Martí J, Geyer A, Folch A, Gottsmann J (2008) A review on collapse caldera modelling. Developments in Volcanology 10:233–283

    Google Scholar 

  • Martin AJ, Umeda K, Connor CB, Weller JN, Zhao D, Takahashi M (2004) Modeling long-term volcanic hazards through Bayesian inference: an example from the Tohoku volcanic arc, Japan. J Geophys Res Solid Earth 109(B10)

  • Miallier D, Pilleyre T, Boivin P, Labazuy P, Gailler LS, Rico J (2017) Grand Sarcoui volcano (Chaîne des Puys, Massif Central, France), a case study for monogenetic trachytic lava domes. J Volcanol Geotherm Res 345:125–141

    Google Scholar 

  • Milner D, Cole JW, Wood C (2002) Asymmetric, multiple-block collapse at Rotorua Caldera, Taupo volcanic zone, New Zealand. Bull Volcanol 64(2):134–149

    Google Scholar 

  • Mortimer N, Campbell HJ, Stagpoole M, Wood RA, Rattenbury MS, Sutherland R, Seton M (2017) Zealandia: Earth’s hidden continent. GSA Today 27(3)

  • Mucek AE, Danišík M, de Silva SL, Schmitt AK, Pratomo I, Coble MA (2017) Post-supereruption recovery at Toba caldera. Nat Commun 8

  • Nairn IA (2002) Geology of the Okataina Volcanic Centre, scale 1: 50 000. Institute of Geological and Nuclear Sciences geological map 25. 1 sheet+ 156 p. Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand

  • Nairn IA, Shane P, Cole JW, Leonard GS, Self S, Pearson N (2004) Rhyolite magma processes of the∼ AD 1315 Kaharoa eruption episode, Tarawera volcano, New Zealand. J Volcanol Geotherm Res 131(3):265–294

    Google Scholar 

  • Nakamura K (1977) Volcanoes as possible indicators of tectonic stress orientation—principle and proposal. J Volcanol Geotherm Res 2(1):1–16

    Google Scholar 

  • Németh K, Kereszturi G (2015) Monogenetic volcanism: personal views and discussion. Int J Earth Sci 104(8):2131–2146

    Google Scholar 

  • Németh K, Kósik S (2020) The role of hydrovolcanism in the formation of the Cenozoic monogenetic volcanic fields of Zealandia. New Zeal J Geol Geophys doi. https://doi.org/10.1080/00288306.2020.1770304

  • Price R, McCulloch M, Smith IEM, Stewart R (1992) Pb-Nd-Sr isotopic compositions and trace element characteristics of young volcanic rocks from Egmont volcano and comparisons with basalts and andesites from the Taupo Volcanic Zone, New Zealand. Geochim Cosmochim Acta 56(3):941–953

    Google Scholar 

  • Reyners M (2013) The central role of the Hikurangi plateau in the Cenozoic tectonics of New Zealand and the Southwest Pacific. Earth Planet Sci Lett 361:460–468

    Google Scholar 

  • Reyners M, Eberhart-Phillips D, Stuart G (2007) The role of fluids in lower-crustal earthquakes near continental rifts. Nature 446(7139):1075–1078

    Google Scholar 

  • Rosenberg MD (2017) Volcanic and tectonic perspectives on the age and evolution of the Wairajei-Tauhara geothermal system, Unpublished PhD thesis, Victoria University of Wellington

  • Rowland JV, Sibson RH (2001) Extensional fault kinematics within the Taupo Volcanic Zone, New Zealand: soft-linked segmentation of a continental rift system. New Zeal J Geol Geophys 44(2):271–283

    Google Scholar 

  • Rowland JV, Sibson RH (2004) Structural control on hydrothermal flow in segmented rift system, Taupo Volcanic Zone, New Zealand. Geofluids 4(4):259–283

    Google Scholar 

  • Rowland JV, Wilson CJN, Gravley DM (2010) Spatial and temporal variations in magma-assisted rifting, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 190(1–2):89–108

    Google Scholar 

  • Runge MG, Bebbington MS, Cronin SJ, Lindsay JM, Kenedi CL, Moufti MRH (2014) Vents to events: determining an eruption event record from volcanic vent structures for the Harrat Rahat, Saudi Arabia. Bull Volcanol 76(3):804

    Google Scholar 

  • Smith RC (1991) Landscape response to a major ignimbrite eruption Taupo Volcanic Center New Zealand. Sedimentation in Volcanic Sellings SEPM Special Publication No 45

  • Smith IEM, Németh K (2017) Source to surface model of monogenetic volcanism: a critical review. Geol Soc Lond, Spec Publ 446(1):1–28

    Google Scholar 

  • Smith VC, Shane P, Nairn IA (2005) Trends in rhyolite geochemistry, mineralogy, and magma storage during the last 50 kyr at Okataina and Taupo volcanic centres, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 148(3):372–406

    Google Scholar 

  • Spinks KD, Acocella V, Cole JW, Bassett KN (2005) Structural control of volcanism and caldera development in the transtensional Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 144(1):7–22

    Google Scholar 

  • Stevenson R, Briggs R, Hodder A (1994) Physical volcanology and emplacement history of the Ben Lomond rhyolite lava flow, Taupo Volcanic Centre, New Zealand. New Zeal J Geol Geophys 37(3):345–358

    Google Scholar 

  • Stirling MW, Wilson CJN (2002) Development of a volcanic hazard model for New Zealand: first approaches from the methods of probabilistic seismic hazard analysis. Bull NZ Soc Earthquake Eng 35:266–277

    Google Scholar 

  • Stratford W, Stern T (2006) Crust and upper mantle structure of a continental backarc: central North Island, New Zealand. Geophys J Int 166(1):469–484

    Google Scholar 

  • Tamura Y, Tatsumi Y, Zhao D, Kido Y, Shukuno H (2002) Hot fingers in the mantle wedge: new insights into magma genesis in subduction zones. Earth Planet Sci Lett 197(1–2):105–116

    Google Scholar 

  • Timm C, Davy B, Haase K, Hoernle KA, Graham IJ, De Ronde CE, Woodhead J, Bassett D, Hauff F, Mortimer N (2014) Subduction of the oceanic Hikurangi plateau and its impact on the Kermadec arc. Nat Commun 5:4923

    Google Scholar 

  • Vandergoes MJ, Hogg AG, Lowe DJ, Newnham RM, Denton GH, Southon J, Barrell DJA, Wilson CJN, McGlone MS, Allan ASR, Almond PC, Petchey F, Dabell K, Dieffenbacher-Krall AC, Blaauw M (2013) A revised age for the Kawakawa/Oruanui tephra, a key marker for the Last Glacial Maximum in New Zealand. Quat Sci Rev 74:195–201

    Google Scholar 

  • Villamor P, Berryman K (2001) A late Quaternary extension rate in the Taupo Volcanic Zone, New Zealand, derived from fault slip data. New Zeal J Geol Geophys 44(2):243–269

    Google Scholar 

  • Villamor P, Berryman K, Ellis S, Schreurs G, Wallace L, Leonard GS, Langridge R, Ries W (2017) Rapid evolution of Subduction-related continental intraarc rifts: the Taupo Rift, New Zealand. Tectonics 36(10):2250–2272

    Google Scholar 

  • Wadge G, Cross A (1988) Quantitative methods for detecting aligned points: an application to the volcanic vents of the Michoacan-Guanajuato volcanic field, Mexico. Geology 16(9):815–818

    Google Scholar 

  • Walker GPL (1984) Downsag calderas, ring faults, caldera sizes, and incremental caldera growth. J Geophys Res Solid Earth 89(B10):8407–8416

    Google Scholar 

  • Walker GPL, Self S, Wilson L (1984) Tarawera 1886, New Zealand - a basaltic Plinian fissure eruption. J Volcanol Geotherm Res 21(1–2):61–78

    Google Scholar 

  • Wetmore PH, Hughes S, Connor LJ, Caplinger M (2009) Spatial distribution of eruptive centers about the Idaho National Laboratory. Volcanic and Tectonic Hazard Assessment for Nuclear Facilities229256

  • Wilson CJN (1991) Ignimbrite morphology and the effects of erosion: a New Zealand case study. Bull Volcanol 53(8):635–644

    Google Scholar 

  • Wilson CJN (1993) Stratigraphy, chronology, styles and dynamics of late Quaternary eruptions from Taupo volcano, New Zealand. Phil Trans Roy Soc Lond Math Phys Sci 343(1668):205–306

    Google Scholar 

  • Wilson CJN, Charlier BLA (2009) Rapid rates of magma generation at contemporaneous magma systems, Taupo Volcano, New Zealand: insights from U–Th model-age spectra in zircons. J Petrol 50(5):875–907

    Google Scholar 

  • Wilson CJN, Charlier BLA (2016) The life and times of silic volcanic systems. Elements 12:103–108

    Google Scholar 

  • Wilson CJN, Rowland JV (2016) The volcanic, magmatic and tectonic setting of the Taupo Volcanic Zone, New Zealand, reviewed from a geothermal perspective. Geothermics 59:168–187

    Google Scholar 

  • Wilson CJN, Houghton BF, Lloyd E (1986) Volcanic history and evolution of the Maroa-Taupo area, central North Island, late Cenozoic volcanism in New Zealand. Royal Society of New Zealand, Bulletin, pp 194–223

    Google Scholar 

  • Wilson CJN, Houghton BF, McWilliams MO, Lanphere MA, Weaver SD, Briggs RM (1995) Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review. J Volcanol Geotherm Res 68(1–3):1–28

    Google Scholar 

  • Wilson CJN, Gravley DM, Leonard GS, Rowland JV (2009) Volcanism in the Central Taupo Volcanic Zone, New Zealand: tempo, styles and controls. Studies in Volcanology. The Legacy of George Walker Special Publications of IAVCEI 2:225–247

    Google Scholar 

  • Wilson G, Wilson T, Deligne N, Cole JW (2014) Volcanic hazard impacts to critical infrastructure: a review. J Volcanol Geotherm Res 286:148–182

    Google Scholar 

Download references

Acknowledgements

SK acknowledges financial support through doctoral scholarship from Institute of Agriculture and Environment, and Dissemination Grant, Massey University. MB was supported by the Natural Hazards Research Platform, Project 2015-MAU-01-NHRP. We thank editor Laura Pioli, and three anonymous reviewers for constructive comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szabolcs Kósik.

Additional information

Editorial responsibility: L. Pioli

Electronic supplementary material

ESM 1

(XLSX 32.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kósik, S., Bebbington, M. & Németh, K. Spatio-temporal hazard estimation in the central silicic part of Taupo Volcanic Zone, New Zealand, based on small to medium volume eruptions. Bull Volcanol 82, 50 (2020). https://doi.org/10.1007/s00445-020-01392-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-020-01392-6

Keywords

Navigation