Skip to main content
Log in

Enhanced CV Entanglement Quantification in a CEL with Parametric Amplifier and Coupled to Squeezed Vacuum

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Externally induced entanglement amplification in a coherently pumped correlated emission laser (CEL) with parametric amplifier and coupled to a two-mode squeezed vacuum reservoir is presented. The combination of the master equation and stochastic differential equation is employed to investigate the entanglement of the two-mode light generated by the quantum system. The resulting solutions of the correlation properties of noise forces associated with the normal ordering are used to find the mean photon number of the cross-correlated mode and separate cavity modes, quadrature fluctuations, smallest eigenvalue of the symplectic matrix, and photon number correlation function. It is found that pumping atoms from the lower energy state to excited state results in a robust entanglement that remains in its maximum strength over a wide range of the strong classical driving radiation. The introduction of the nonlinear crystal into the linear cavity, and coupling the system to the two-mode squeezed vacuum environment lead to a significant enhancement of entanglement of the cavity light. The enhanced entanglement is quantified employing logarithmic negativity, Cauchy–Schwarz inequality, and Duan et al. criteria. It has been observed that an intense light can be produced where the entanglement is strong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. S. Qamar, M. Al-Amri, M.S. Zubairy, Phys. Rev. A. 79, 013831 (2009)

    Article  ADS  Google Scholar 

  2. J. Anwar, M.S. Zubairy, Phys. Rev. A. 49, 481 (1994)

    Article  ADS  Google Scholar 

  3. N.A. Ansari, J.G. Banacloche, M.S. Zubairy, Phys. Rev. A. 41, 5179 (1990)

    Article  ADS  Google Scholar 

  4. A. Mortezapour, M. Mahmoudi, M. R. H. Khajehpour, Opt. Quant. Electron. 47, 2311–2329 (2015)

    Article  Google Scholar 

  5. C.A. Blockley, D.F. Walls, Phys. Rev. A. 43, 5049 (1991)

    Article  ADS  Google Scholar 

  6. N. Lu, F.X. Zhao, J. Bergou, Phys. Rev. A. 39, 5189 (1989)

    Article  ADS  Google Scholar 

  7. E. Alebachew, Opt. Commun. 280, 133 (2007)

    Article  ADS  Google Scholar 

  8. S. Tesfa, Phys. Rev. A. 74, 043816 (2006)

    Article  ADS  Google Scholar 

  9. T. Abebe, N. Gemechu, Ukr. J. Phys. 63, 600 (2018)

    Article  Google Scholar 

  10. R. Vyas, S. Singh, Phys. Rev. A. 40, 5147 (1989)

    Article  ADS  Google Scholar 

  11. L.I. Plimak, D.F. Walls, Phys. Rev. A. 50, 2627 (1994)

    Article  ADS  Google Scholar 

  12. K. Fesseha, Opt. Commun. 156, 145 (1998)

    Article  ADS  Google Scholar 

  13. R.T. Glasser, H. Cable, J.P. Dowling, F. De Martini, F. Sciarrino, C. Vitelli, Phys. Rev. A. 78, 012339 (2008)

    Article  ADS  Google Scholar 

  14. L.A. Lugiato, G. Strini, Opt. Commun. 41, 67 (1982)

    Article  ADS  Google Scholar 

  15. G.J. Milburn, D.F. Walls, Opt. Commun. 39, 401 (1981)

    Article  ADS  Google Scholar 

  16. P.D. Drummond, K. Dechoum, S. Chaturvedi, Phys. Rev. A. 65, 033806 (2002)

    Article  ADS  Google Scholar 

  17. M.D. Reid, P.D. Drummond, Phys. Rev. Lett. 60, 2731 (1988)

    Article  ADS  Google Scholar 

  18. Z.Y. Ou, S.F. Pereira, H.J. Kimble, K.C. Peng, Phys. Rev. Lett. 68, 3663 (1992)

    Article  ADS  Google Scholar 

  19. T. Abebe, Ukr. J. Phys. 63, 733 (2018)

    Article  Google Scholar 

  20. B. Daniel, K. Fesseha, Opt. Commun. 151, 384 (1998)

    Article  ADS  Google Scholar 

  21. B. Teklu, Opt. Commun. 261, 310 (2006)

    Article  ADS  Google Scholar 

  22. K. Fesseha, Fundamental of quantum optics (Lulu North Carolina (2008)

  23. K. Heshami, D.G. England, P.C. Humphreys, P.J. Bustard, V.M. Acosta, J. Nunn, B.J. Sussman, J. Mod. Opt. 63, 2005 (2016)

    Article  ADS  Google Scholar 

  24. C.H. Bennett, D.P. DiVincenzo, Nature. 404, 247 (2000)

    Article  ADS  Google Scholar 

  25. S. Barzanjeh, S. Pirandola, C. Weedbrook, Phys. Rev. A. 88, 042331 (2013)

    Article  ADS  Google Scholar 

  26. J.G. Ren, P. Xu, H.L. Yong, L. Zhang, S.K. Liao, J. Yin,W.Y. Liu, W.Q. Cai, M. Yang, L. Li, K.X. Yang, X. Han, Y.Q. Yao, J. Li, H.Y. Wu, S. Wan, L. Liu, D.Q. Liu, Y.W. Kuang, Z.P. He, P. Shang, C. Guo, R.H. Zheng, K. Tian, Z.C. Zhu, N.L. Liu, C.Y. Lu, R. Shu, Y.A. Chen, C.Z. Peng, J.Y.Wang, J.W. Pan, Nature 549, 70 (2017)

  27. C.L. Degen, F. Reinhard, P. Cappellaro, Rev. Mod. Phys. 89, 035002 (2017)

    Article  ADS  Google Scholar 

  28. A. Einstein, B. Podolsky, R. Rosen, Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  29. H. Xiong, M. Scully, M. Zubairy, Phys. Rev. Lett. 94, 023601 (2005)

    Article  ADS  Google Scholar 

  30. E. Alebachew, Phys. Rev. A. 76, 023808 (2007)

    Article  ADS  Google Scholar 

  31. S. Tesfa, J. Phys. B: At. Mol. Opt. Phys. 41, 055503 (2008)

    Article  ADS  Google Scholar 

  32. W.H. Louisell. Quantum Statistical Properties of Radiation (Wiley, New York, 1973)

    MATH  Google Scholar 

  33. G. Vidal, R.F. Wener, Phys. Rev. A. 65, 032314 (2002)

    Article  ADS  Google Scholar 

  34. G. Adesso, A. Serafini, F. Illuminati, Phys. Rev. A. 70, 022318 (2004)

    Article  ADS  Google Scholar 

  35. L.M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 84, 2722 (2000)

    Article  ADS  Google Scholar 

  36. A.S. Sumairi, S.N. Hazmin, C.H. Raymond Ooi, J. Mod. Opt. 60, 589–597 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chimdessa Gashu Feyisa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feyisa, C.G. Enhanced CV Entanglement Quantification in a CEL with Parametric Amplifier and Coupled to Squeezed Vacuum. Braz J Phys 50, 379–393 (2020). https://doi.org/10.1007/s13538-020-00759-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00759-6

Keywords

Navigation