Skip to main content
Log in

Ectopic expression of WsMBP1 from Withania somnifera in transgenic tobacco shows insecticidal activity against teak defoliator Hyblaea puera (Lepidoptera: Hyblaeidae)

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

An insecticidal mannose binding lectin gene of Withania somnifera, WsMBP1 was constitutively expressed in tobacco plants. Instar-wise study on the response of Hyblaea puera larvae to the total protein extracted from transgenic tobacco was conducted and survivability percent was 33.33% and 55.55% in the first and the second instars, respectively. Minimum survivability of 22.22% was registered in the third instar. Further, two-fold reduction was observed in mean pre-pupal and pupal weight in the third instar larval populations fed with lectin protein compared to the control populations. The functional confirmation of the insecticidal activity of WsMBP1 established its potential as a novel gene resource for future transformation studies in developing teak genotypes tolerant to its leaf defoliator, H. puera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Act :

Actin

ANOVA:

Analysis of variance

BAP:

6-Benzylaminopurine

bp:

Base pair

BSA:

Bovine serum albumin

cDNA:

complementary DNA

Ct:

cycle threshold

cv:

Cultivated Variety

gms:

Grams

Ha:

Hectare

HpNPV:

H. puera nucleopolyhedrovirus

hpt :

Hygromycin

m3/ha:

Cubic meter/ hectare

mg/L:

Milligram/ litre

min:

Minute

mM:

Micromole

MS:

Murashige and Skoog

NAA:

1-Naphthaleneacetic acid

ng:

Nanogram

nm:

Nanometer

PCR:

Polymerase chain reaction

qRT-PCR:

Quantitative real time polymerase chain reaction

sec:

Second

T-DNA:

transfer DNA

mg:

Milligram

µM:

Micromole

References

  • Ananthakrishnan TN (2017) Insect biodiversity: functional dynamics and ecological perspectives. Scientific Publishers, India

    Google Scholar 

  • Appanch S, Yusoff SYM, Jasery AW, Choon KK (2000) Insect pests in teak. Proc. 4th Conference, Forest Research Institute, Malaysia, 8: 2–4

  • Arun PR, Mahajan MV (2012) Ecological costs and benefits of teak defoliator (Hyblaea puera Cramer) outbreaks in a mangrove ecosystem. Mar Sci 2(5):48–51. https://doi.org/10.5923/j.ms.20120205.02

    Article  Google Scholar 

  • Atalah AB, Smagghe G, Van Damme EJ (2014) Orysata, a jacalin-related lectin from rice, could protect plants against biting-chewing and piercing sucking insects. Plant Sci 21(8):221–222. https://doi.org/10.1016/j.plantsci.2014.01.010

    Article  CAS  Google Scholar 

  • Baksha MW, Crawley MJ (1995) Relative preference of different host plants to teak defoliator, Hyblaea puera Cram. (Hyblaeidae: Lepidoptera) in Bangladesh. Bangladesh J For Sci 24:21–25

    Google Scholar 

  • Biswas O, Panja B, Garain PK, Shah SK, Modak BK, Mitra B (2017) Hyblaea puera (Cramer, 1777) [Lepidoptera: Hyblaeidae] Infestation on Avicennia alba Blume in Sunderban Biosphere Reserve, West Bengal, India. Proc Zool Soc 71:331. https://doi.org/10.1007/s12595-017-0216-0

    Article  Google Scholar 

  • Bubner B, Baldwin IT (2004) Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Rep 23:263–271. https://doi.org/10.1007/s00299-004-0859-y

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar N, Sajeev TV, Sudheendrakumar VV, Banerjee M (2005) Population dynamics of the teak defoliator (Hyblaea puera Cramer) in Nilambur teak plantations using randomly amplified gene encoding primers (RAGEP). BMC Ecol 5:1. https://doi.org/10.1186/1472-6785-5-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felton GW (2005) Indigestion is a plant’s best defense. Proc Natl Acad Sci U S A 102:18771–18772. https://doi.org/10.1073/pnas.0509895102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaidamashvili M, Khurtsidze E (2014) Larvicidal activity of mistletoe lectin on lepidopteran pests: mechanisms of action. In: Proc. International Conference on Civil, Biological and Environmental Engineering (CBEE-2014), May 27–28, 2014 Istanbul, Turkey

  • George BS, Silambarasan S, Senthil K, Jacob JP, Dasgupta MG (2018) Characterization of an insecticidal protein from Withania somnifera against lepidopteran and hemipteran pest. Mol Biotechnol 60:290–301. https://doi.org/10.1007/s12033-018-0070-y

    Article  CAS  PubMed  Google Scholar 

  • Ghude DB, Gogate MG, Nair KSS, Sharma JK, Verma RV (1993) Insect-pests of teak in Maharashtra, India. Impact of diseases and insect pests in tropical forests. Proc of the IUFRO Symposium, Nov. 23–26, Peechi, India, pp 995–997

  • Hedegart T (1976) Breeding system, variation and genetic improvement of teak, (Tectona grandis Linn. f.). In: Burley J, Styles BT (eds) Tropical Trees. Academic, London, pp 109–123

    Google Scholar 

  • Hossain MA, Maiti MK, Basu A, Sen S, Ghosh AK, Sen SK (2006) Transgenic expression of onion leaf lectin gene in Indian mustard offers protection against aphid colonization. Crop Sci 46:2022–2032. https://doi.org/10.2135/cropsci2005.11.0418

    Article  CAS  Google Scholar 

  • Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 3:132–140. https://doi.org/10.2144/01311rr04

    Article  Google Scholar 

  • Javaregowda, Naik LK (2008) Management of teak defoliator, Hyblaea puera Cramer in teak plantation. Karnataka J Agric Sci 21(4):516–518

  • Jayaregowda, Naik LK (2007) Seasonal incidence of teak defoliator, Hyblaea puera cramer (Hyblaeidae: Lepidoptera) in Uttara Kannada District of Karnataka. Karnataka J Agric Sci 20:153–154

  • Jin S, Zhang X, Daniell H (2012) Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, Lepidopteran insects, bacterial and viral pathogens. Plant Biotechnol J 10:313–327. https://doi.org/10.1111/j.1467-7652.2011.00663.x

    Article  CAS  PubMed  Google Scholar 

  • Kaosa-ard A (1989) Teak (Tectona grandis L.f.) - its natural distribution and related factors. Nat Hist Bull Siam Soc 29:55–74

    Google Scholar 

  • Kaur M, Singh K, Rup PJ, Kamboj SS, Singh J (2009) Anti-insect potential of lectins from Arisaema species towards Bactrocera cucurbitae. J Environ Biol 30:1019–1023

    CAS  PubMed  Google Scholar 

  • Kaur M, Singh J, Kamboj SS, Saxena AK (2011) A lectin with anti-proliferative, mitogenic and anti-insect potential from the tubers of Caladium bicolor Vent. Asian Australas J Plant Sci Biotechnol 5:1–9

    Google Scholar 

  • Keogh RM (1979) Does teak have a future in tropical America? A survey of Tectona grandis in the Caribbean, Central America, Venezuela and Columbia. Unasylva 31:13–19

    Google Scholar 

  • Kollert W, Kleine M (2017) The global teak study. Analysis, evaluation and future potential of teak resources, IUFRO World Series, 36, Vienna

  • Koskela J, Vinceti B, Dvorak W, Bush D, Dawson IK, Loo J, Kjaer ED, Navarro C, Padolina C, Bordács S, Bordacs S, Jamnadass R, Graudal L, Ramamonjisoa L (2014) Utilization and transfer of forest genetic resources: a global review. For Ecol Manag 333:22–34. https://doi.org/10.1016/j.foreco.2014.07.017

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  • Macedo M, Oliveira C, Oliveira C (2015) Insecticidal activity of plant lectins and potential application in crop protection. Molecules 20:2014–2033. https://doi.org/10.3390/molecules20022014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–162. https://doi.org/10.1016/0022-2836(70)90051-3

    Article  CAS  PubMed  Google Scholar 

  • Martinez DS, Freire MD, Mazzafera P, Araujo-Júnior RT, Bueno RD, Macedo ML (2012) Insecticidal effect of labramin, a lectin-like protein isolated from seeds of the beach apricot tree, Labramia bojeri, on the Mediterranean flour moth, Ephestia kuehniella. J Insect Sci 12:62. https://doi.org/10.1673/031.012.6201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal HA, Roy A, Gupta S, Das S (2012) Exploring the insecticidal potentiality of Amorphophallus paeonifolius tuber agglutinin in hemipteran pest management. Am J Plant Sci 3:780–790. https://doi.org/10.4236/ajps.2012.36094

    Article  CAS  Google Scholar 

  • Naghdi M, Bandani AR (2012) Snowdrop Lectin (GNA) Affects Growth and Development of Spodoptera exigua (Hubner). J Agr Sci Tech-Iran 14:469–477

    CAS  Google Scholar 

  • Nair KSS (1988) The Teak defoliator in Kerala, India. In: Berryman AA (ed) Dynamics of forest insect populations. Springer, Boston, pp 267–289

    Chapter  Google Scholar 

  • Nair KSS, Kedarnath S, Koshy MP, Sudheendrakumar VV, Varma RV, Mohanadas K, Mathew G (1989) Search for natural resistance to the insect pest, Hyblaea puera in teak. KFRI Research Report, No. 62, Kerala Forest Research Institute, Peechi, Kerala, India, p30

  • Nair KSS, Sudheendrakumar VV, Varma RV, Chacko KC (1985) Studies on the seasonal incidence of defoliators and the effect of defoliation on volume increment of teak. Report No. 30, Kerala Forest Research Institute Research, Peechi

  • Norwati A, Norlia B, Mohd Rosli H, Norwati M, Abdullah R (2011) Development of transgenic teak (Tectona grandis) expressing a cry1Ab gene for control of the skeletoniser. AsPac J Mol Biol Biotechnol 19:149–156

    Google Scholar 

  • Oliveira CF, Luz LA, Paiva PM, Coelho LC, Marangoni S, Macedo ML (2011) Evaluation of seed coagulant Moringa oliefera lectin (cMoL) as a bioinsecticidal tool with potential for the control of insects. Process Biochem 46:498–504. https://doi.org/10.1016/j.procbio.2010.09.025

    Article  CAS  Google Scholar 

  • Palanisamy K, Hegde M, Yi JS (2009) Teak (Tectona grandis Linn. F.): A renowned commercial timber species. J For Environ Sci 25:1–24

    Google Scholar 

  • Pandey V, Singh AK, Sharma RP (2010) Biodiversity of insect pests associated with teak (Tectona grandis L.f.) in eastern Uttar Pradesh of India. Res J For 4:136–144. https://doi.org/10.3923/rjf.2010.136.144

    Article  Google Scholar 

  • Powell KS (2001) Antimetabolic effects of plant lectins towards nymphal stages of the planthoppers Tarophagous proserpina and Nilaparvata lugens. Entomol Exp Appl 99(1):71–78. https://doi.org/10.1046/j.1570-7458.2001.00803.x

    Article  CAS  Google Scholar 

  • Powell KS, Gatehouse AMR, Hilder VA, Gatehouse JA (1993) Antimetabolic effects of plant lectins and plant and fungal enzymes on the nymphal stages of two important rice pests, Nilaparvata lugens and Nephotettix cinciteps. Entomol Exp Appl 66(2):119–126. https://doi.org/10.1111/j.1570-7458.1993.tb00699.x

    Article  CAS  Google Scholar 

  • Ramzi S, Sahragard A, Sendi JJ, Aalami A (2013) Effects of an extracted lectin from Citrullus colocynthis L. (Cucurbitaceae) on survival, digestion and energy reserves of Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae). Front Physiol 4:328. https://doi.org/10.3389/fphys.2013.00328

    Article  PubMed  PubMed Central  Google Scholar 

  • Remadevi OK, Sapna Bai N, Sasidharan TO, Balachander M, Dharmarajan P (2013) Attempts at controlling teak defoliator (Hyblaea puera Cramer, Lepidoptera, Hyblaeidae) with the entomopathogenic fungus, Metarhizium anisopliae (Metsch.): laboratory, nursery and field trials. Int J Pest Manag 59:236–242. https://doi.org/10.1080/09670874.2013.832438

    Article  Google Scholar 

  • Reyes-Montaño EA, Vega-Castro NA (2018) Plant Lectins with Insecticidal and Insectistatic Activities. In: Begum G (ed) Insecticides - Agriculture and Toxicology, IntechOpen, London. https://doi.org/10.5772/intechopen.74962

  • Roychoudhury N, Chourasia M, Jalil P, Joshi KC (2010) Field screening for non-preference resistance in some teak clones of Madhya Pradesh to major insect pests. Indian J For 33:367–371

    Google Scholar 

  • Roychoudhury N, Chandra S, Singh RB (2018) Biological control of Hyblaea puera and Eutectona machaeralis by introduction of native egg parasitoid, Trichogramma raoi in teak forests. Pestology 42(6):36–41

    Google Scholar 

  • Sadeghi A, Van Damme EJM, Michiels K, Kabera A, Smagghe G (2009a) Acute and chronic insecticidal activity of a new mannose-binding lectin from Allium porrum against Acyrthosiphon pisum via an artificial diet. Can Entomol 141(1):95–101. doi:https://doi.org/10.4039/n08-060

    Article  Google Scholar 

  • Sadeghi A, Smagghe G, Jurado-Jácome E, Peumans WJ, Van Damme EJM (2009b) Laboratory study of the effects of leek lectin (APA) in transgenic tobacco plants on the development of cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae). Eur J Entomol 106(1):21–28. https://doi.org/10.14411/eje.2009.003

    Article  CAS  Google Scholar 

  • Singh K, Kaur M, Rup PJ, Singh J (2006) Exploration for anti-insect properties of lectin from seeds of soybean (Glycine max) using Bactrocera cucurbitae as a model. Phytoparasitica 34:463–473. https://doi.org/10.1007/BF02981200

    Article  CAS  Google Scholar 

  • Subr Z, Novakova S, Drahovska H (2006) Detection of transgene copy number by analysis of the T1 generation of tobacco plants with introduced P3 gene of potato virus A. Acta Virol 50:135–138

    CAS  PubMed  Google Scholar 

  • Sudheendrakumar VV, Sajeev TV, Bindu TN (2011) Studies on controlling the teak defoliator outbreaks by seeding the baculovirus, HpNPV in epicenter populations. Technical Report No. 418, Kerala Forest Research Institute, Peechi, Kerala, India. https://doi.org/10.13140/2.1.3559.8089

  • Thakur K, Kaur M, Kaur S, Kaur A, Kamboj SS, Singh J (2012) Purification of Colocasia esculenta lectin and determination of its antiinsect potential towards Bactrocera cucurbitae. J Environ Biol 34:31–36

    Google Scholar 

  • Vandenborre G, Smagghe G, Van Damme EJM (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72:1538–1550. https://doi.org/10.1016/j.phytochem.2011.02.024

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos IM, Oliveira JT (2004) Antinutritional properties of plant lectins. Toxicon 44(4):385–403. https://doi.org/10.1016/j.toxicon.2004.05.005

    Article  CAS  PubMed  Google Scholar 

  • Veluthakkal R, Ghosh Dasgupta M (2015) Agrobacterium-mediated transformation of chitinase gene from the actinorhizal tree Casuarina equisetifolia in Nicotiana tabacum. Biologia 70:905–914. https://doi.org/10.1515/biolog-2015-0114

    Article  CAS  Google Scholar 

  • Yarasi B, Sadumpati V, Immanni CP, Vudem DR, Khareedu VR (2008) Transgenic rice expressing Allium sativum leaf lectin (ASAL) exhibits high level resistance against major sap-sucking pests. BMC Plant Biol 8:102. https://doi.org/10.1186/1471-2229-8-102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zapata N, Van Damme EJ, Vargas M, Devotto L, Smagghe G (2016) Insecticidal activity of a protein extracted from bulbs of Phycella australis Ravenna against the aphids Acyrthosiphon pisum Harris and Myzus persicae Sulzer. Chil J Agr Res 76(2):188–194. https://doi.org/10.4067/S0718-58392016000200008

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge Department of Biotechnology, Government of India, for funding the research work. The funding support as research fellowship was provided to BSG by Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Modhumita Ghosh Dasgupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, B.S., Silambarasan, S., Senthil, K. et al. Ectopic expression of WsMBP1 from Withania somnifera in transgenic tobacco shows insecticidal activity against teak defoliator Hyblaea puera (Lepidoptera: Hyblaeidae). Biologia 75, 2331–2339 (2020). https://doi.org/10.2478/s11756-020-00531-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-020-00531-w

Keywords

Navigation