Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 18, 2020

Synthesis and crystal structures of β-[Be(DMF)4]I2, [Be(Pyr)4]I2, [Be(NMP)4]I2 and [BeI2(Lut)2]

  • Timotheus Hohl , Torben Sinn and Constantin Hoch EMAIL logo

Abstract

Four solvent complexes of beryllium iodide were prepared by dissolving BeI2 in N,N-dimethyl formamide (DMF), pyridine (Pyr), N-methyl pyrrolidone (NMP) and 2,6-dimethyl pyridine (2,6-lutidine, Lut). Their crystal structures were established from single crystal X-ray diffraction. For [Be(DMF)4]I2 a new modification is reported (monoclinic, space group P21/c, a = 12.491(2), b = 11.593(2), c = 15.310(3) Å, β = 94.7073(6)°). In [Be(Pyr)4]I2 (monoclinic, space group C2/c, a = 17.8799(13), b = 7.6174(5), c = 18.2611(14) Å, β = 113.508(4)°) and [Be(NMP)4]I2 (orthorhombic, space group Pbca, a = 13.941(5), b = 15.754(3), c = 24.634(7) Å) homoleptic tetrahedral complex cations are formed, while the sterically demanding solvent ligand Lut yields a neutral complex with covalently bound iodine ligands [BeI2(Lut)2] (monoclinic, space group P21/c, a = 7.8492(9), b = 24.265(3), c = 27.037(3) Å, β = 97.076(3)°). Their electrochemical stability with respect to their application as beryllium electrolytes for deposition of beryllium from solution is discussed.

Acknowledgement

We thank the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG) for their financial support of this project.

References

[1] F. Tambornino, J. Sappl, F. Pultar, T. M. Cong, S. Hübner, T. Giftthaler, C. Hoch, Inorg. Chem. 2016, 55, 11551–11559.10.1021/acs.inorgchem.6b02068Search in Google Scholar PubMed

[2] C. Hoch, A. Simon, Z. Anorg. Allg. Chem. 2006, 632, 2288–2294.10.1002/zaac.200600163Search in Google Scholar

[3] C. Hoch, A. Simon, Z. Anorg. Allg. Chem. 2006, 634, 853–856.10.1002/zaac.200700535Search in Google Scholar

[4] F. Tambornino, C. Hoch, J. Alloys. Compd. 2015, 618, 299–304.10.1016/j.jallcom.2014.08.173Search in Google Scholar

[5] F. Tambornino, C. Hoch, Z. Anorg. Allg. Chem. 2015, 641, 537–542.10.1002/zaac.201400561Search in Google Scholar

[6] F. Tambornino, C. Hoch, Z. Kristallogr. 2017, 232, 557–565.10.1515/zkri-2016-2036Search in Google Scholar

[7] C. Röhr, Z. Kristallogr. 2018, 233, 515.10.1515/zkri-2018-2054Search in Google Scholar

[8] H. J. Deiseroth in Molecular Clusters of the Main Group Elements, (Eds.: M Driess, H. Nöth), Wiley-VCH, Weinheim, 2004, pp. 169–187.10.1002/3527602445.ch2dSearch in Google Scholar

[9] T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzac (Eds.), Binary Alloy Phase Diagrams, 2nd edition, ASM International, OH, 1990.Search in Google Scholar

[10] K. Dehnicke, B. Neumüller, Z. Anorg. Allg. Chem. 2008, 634, 2703–2728.10.1002/zaac.200800163Search in Google Scholar

[11] B. Neumüller, K. Dehnicke, Z. Anorg. Allg. Chem. 2010, 636, 1516–1521.10.1002/zaac.201000100Search in Google Scholar

[12] B. Neumüller, K. Dehnicke, Z. Anorg. Allg. Chem. 2010, 636, 515–517.10.1002/zaac.200900481Search in Google Scholar

[13] B. Neumüller, K. Dehnicke, Z. Anorg. Allg. Chem. 2010, 636, 1767–1771.10.1002/zaac.201000026Search in Google Scholar

[14] M. Müller, M. Buchner, Inorg. Chem. 2019, 58, 13276–13284.10.1021/acs.inorgchem.9b02139Search in Google Scholar PubMed

[15] B. Neumüller, K. Dehnicke, Z. Anorg. Allg. Chem. 2010, 636, 962–965.10.1002/zaac.200900541Search in Google Scholar

[16] C. Jones, A. Stasch, X-Ray Struct. Anal. Online 2007, 23, x115–x116.10.2116/analscix.23.x115Search in Google Scholar

[17] M. Müller, M. R. Buchner, Dalton Trans. 2018, 47, 12506–12510.10.1039/C8DT01756ESearch in Google Scholar PubMed

[18] L. M. Gelato, E. Parthé, J. Appl. Crystallogr. 1987, 20, 139–143.10.1107/S0021889887086965Search in Google Scholar

[19] X-Red, Data Reduction for STADIP and IPDS, (version 1.31), STOE & Cie., Darmstadt (Germany) 2005.Search in Google Scholar

[20] X-Shape, Crystal Optimization for Numerical Absorption Correction, (version 2.07), STOE & Cie., Darmstadt (Germany) 2005.Search in Google Scholar

[21] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

[22] P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 186–197.10.1002/chem.200800987Search in Google Scholar PubMed

[23] R. D. Shannon, Acta Crystallogr. 1976, A32, 751–767.10.1107/S0567739476001551Search in Google Scholar

[24] L. W. Finger, M. Kroeker, B. H. Toby, J. Appl. Crystallogr. 2007, 40, 188–192.10.1107/S0021889806051557Search in Google Scholar

[25] D. Naglav, M. R. Buchner, G. Bendt, F. Kraus, Stephan Schulz, Angew. Chem. Int. Ed. 2016, 55, 10562–10576.10.1002/anie.201601809Search in Google Scholar PubMed

[26] G. B. Wood, A. Brenner, J. Electrochem. Soc. 1957, 104, 29.10.1149/1.2428491Search in Google Scholar

[27] G. Brauer, Handbook of Preparative Inorganic Chemistry, Vol. 1, 2nd edition, Academic Press, New York (NY) 1963, pp. 892–893.Search in Google Scholar

[28] D. L. Perry, S. L. Philipps (Eds.), Handbook of inorganic compounds, CRC Press, New York, 1995, pp. 63.Search in Google Scholar

[29] Apex3 (version 2018.1-0), Bruker AXS GmbH, Karlsruhe (Germany) 2018.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2020-0035).


Received: 2020-02-20
Accepted: 2020-03-14
Published Online: 2020-04-18
Published in Print: 2020-05-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.5.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2020-0035/html
Scroll to top button