Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) October 17, 2019

Values of antioxidant activities (ABTS and DPPH) and ferric reducing and chelating powers of gamma-irradiated rosemary extract

  • Reza Rezanejad , Marzieh Heidarieh EMAIL logo , Seyed Mahdi Ojagh EMAIL logo , Masoud Rezaei , Mojtaba Raeisi and Alireza Alishahi
From the journal Radiochimica Acta

Abstract

This study was carried out to evaluate the effect of the various gamma dose irradiations on the antioxidant activity of rosemary PBS (phosphate-buffered saline) extract. The PBS extract of rosemary was irradiated with gamma rays at the doses of 10, 20, 30, 40 and 50 kGy, and their antioxidant activities were investigated by DPPH (1,1-diphenyl-2-picrylhydrazyl), radical cation ABTS•+ (2,2-Azino-Bis (3-Ethylbenzthiazoline-6-Sulfonic Acid), Diammonium Salt), ferric reducing antioxidant power assay (FRAP) and ferric chelating capacity using ferrozine. The scavenging activities of gamma irradiated rosemary were observed to be significantly higher at 30 and 40 kGy using both methods, DPPH and ABST. Also, the reducing power values of 30 kGy gamma irradiated rosemary were higher than that of non-irradiated (P < 0.05) and the other doses of irradiation could not make any significant difference in reducing power of non-irradiated rosemary. The gamma irradiation of rosemary (at 10–50 kGy), significantly increased the Fe2+ chelating activity compared to non-irradiated rosemary while increasing the absorbed doses reduced Fe2+ chelating activity in rosemary (P < 0.05). There is no significant difference in the rosemary irradiated with 10 kGy and 30 kGy. The gamma irradiated rosemary showed higher antioxidant activities at doses of 30 kGy (79.5 %) and 40 kGy (80 %) with DPPH method, while slightly lower activities were recorded at doses of 30 kGy (34.8 %) and 40 kGy (34.2 %) with ABTS test. Also, results indicate that the 30 kGy might be an effective dose with maximum enhancement in the antioxidant properties of the gamma irradiated rosemary.

Acknowledgements

The authors would like to thank the Research Council of Nuclear Science and Technology research Institute, Karaj, Iran; Gorgan University of Agricultural Sciences and Natural Resources and Department of seafood processing, Faculty of marine science, Tarbiat Modares University, Noor, Iran for financial and technical support of this study.

References

1. Serdaroglu, M., Felekoglu, E.: Effects of using rosemary extract and onion juice on oxidative stability of sardine (Sardına pılchardus) mince. J. Food Qual. 28, 109 (2005).10.1111/j.1745-4557.2005.00016.xSearch in Google Scholar

2. Ibrahim, S. M., El-Sherif, S. A.: Effect of some plant extracts on quality aspects of frozen Tilapia (Oreochromis niloticus L.) fillets. Glob. Vet. 22, 62 (2008).Search in Google Scholar

3. Abutbul, S., Golan-Goldhirsh, A., Barazani, O., Zilberg, D.: Use of Rosmarinus officinalis as a treatment against Streptococcus iniae in tilapia (Oreochromis sp.). Aquaculture 238, 97 (2004).10.1016/j.aquaculture.2004.05.016Search in Google Scholar

4. Tironi, V. A., Tomàs, M. C., Anon, M.: Quality loss during the frozen storage of sea salmon (Pseudopercis semifasciata). Effect of rosemary (Rosmarinus officinalis L.) extract. LWT – Food Sci. Technol. 43, 263 (2010).10.1016/j.lwt.2009.07.007Search in Google Scholar

5. Li, T., Hu, W., Li, J., Zhang, X., Zhu, J., Li, X.: Coating effects of tea polyphenol and rosemary extract combined with chitosan on the storage quality of large yellow croaker (Pseudosciaena crocea). Food Control 25, 101 (2012).10.1016/j.foodcont.2011.10.029Search in Google Scholar

6. Hernández, A., García García, B., Jordán, M. J., Hernández, M. D.: Improved conservation of gilthead seabream (Sparus aurata) in ice storage. The influence of doses of rosemary extract added to feed. Aquaculture 426–427, 31 (2014).10.1016/j.aquaculture.2014.01.018Search in Google Scholar

7. Tsen, S. Y., Ameri, F., Smith, J. S.: Effects of rosemary extracts on the reduction of heterocyclic amines in beef patties. J. Food Sci. 71, 469 (2006).10.1111/j.1750-3841.2006.00149.xSearch in Google Scholar

8. Repine, J. E., Pfenninge, D. W., Talmage, D. W., Berger, E. M., Pettijohn, D. E.: Dimethyl sulfoxide prevents DNA nicking mediated by ionizing radiation or iron/hydrogen peroxide-generated hydroxyl radical. Proc. Nat. Acad. Sci. U.S.A. 78, 1001 (1981).10.1073/pnas.78.2.1001Search in Google Scholar

9. von Sonntag, C.: The Chemical Basis of Radiation Biology. Taylor and Francis, London (1987).Search in Google Scholar

10. Xienia, U., Foote, G. C., Van, S., Devreotes, P. N., Alexander, S., Alexander, H.: Differential developmental expression and cell type specificity of Dictystelium catalases and their response to oxidative stress and UV light. Biochem. Biophys. Acta 149, 295 (2000).10.1016/S0167-4781(00)00063-4Search in Google Scholar

11. Heidarieh, M., Borzouei, A., Rajabifar, S., Ziaie, F., Shafiei, S. H.: Effects of gamma irradiation on antioxidant activity of Ergosan. Iran. J. Radiat. Res. 9, 245 (2012).Search in Google Scholar

12. Rezanejad, R., Ojagh, S. M., Heidarieh, M., Raeisi, M., Rafiee, G., Alishahi, A.: Characterization of gamma-irradiated Rosmarinus officinalis L. (rosemary). Turk. J. Pharm. Sci. 16(1), 43 (2019).10.4274/tjps.37880Search in Google Scholar

13. Brand-William, W., Cuvelier, M. E., Berset, C.: Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss. Technol. 28, 25 (1995).10.1016/S0023-6438(95)80008-5Search in Google Scholar

14. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26(9–10), 1231 (1999).10.1016/S0891-5849(98)00315-3Search in Google Scholar

15. Klompong, V., Benjakul, S., Kantachote, D., Shahidi, F.: Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 102, 1317 (2007).10.1016/j.foodchem.2006.07.016Search in Google Scholar

16. Oyaizu, M.: Studies on product of browning reaction prepared from glucose amine. Jpn. J. Nutr. 44, 307 (1986).10.5264/eiyogakuzashi.44.307Search in Google Scholar

17. Buyukokuroglu, M. E., GulcIn, I., Oktay, M., Kufrevioglu, O. I.: In vitro antioxidant properties of dantrolene sodium. Pharmacol. Res. 44(6), 491 (2001).10.1006/phrs.2001.0890Search in Google Scholar

18. Addis, P. B., Warner, G. J.: The potential health aspects of lipid oxidation products in food. In: O. I. Aruoma, B. Halliwell (Eds.), Free Radicals and Food Additives, Taylor and Francis Ltd., London (1991), p. 77.Search in Google Scholar

19. Richeimer, S. L., Bernart, M. W., King, G. A., Kent, M. C., Bailey, D. T.: Antioxidant activity of lipid-soluble phenolic diterpenes from rosemary. J. Am. Oil Chem. Soc. 73, 507 (1996).10.1007/BF02523927Search in Google Scholar

20. Dawidowicz, A. L., Wianowska, D., Baraniak, B.: The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). LWT-Food Sci. Technol. 39, 308 (2006).10.1016/j.lwt.2005.01.005Search in Google Scholar

21. Perez, M. B., Calderon, N. L., Croci, C. A.: Radiation-induced enhancement of antioxidant activity in extracts of Rosemary (Rosmarinus officinalis L.). Food Chem. 104, 585 (2007).10.1016/j.foodchem.2006.12.009Search in Google Scholar

22. Koseki, P. M., Villavicencio, A. L. C. H., Brito, M. S., Nahme, L. C., Sebastiao, K. I., Rela, P. R., Almeida-Muradian, L. B., Mancini-Filho, J., Freitas, P. C. D.: Effects of irradiation in medicinal and eatable herbs. Radiat. Phys. Chem. 63, 681 (2002).10.1016/S0969-806X(01)00658-2Search in Google Scholar

23. Huang, S. J., Mau, J. L.: Antioxidant properties of methanolic extracts from Agaricus blazei with various doses of γ-irradiation. LWT – Food Sci. Technol. 39, 707 (2006).10.1016/j.lwt.2005.06.001Search in Google Scholar

24. Polovka, M., Brezová, V., Staško, A., Mazúr, M., Suhaj, M., Šimko, P.: EPR investigations of gamma-irradiated ground black pepper. Radiat. Phys. Chem. 75, 309 (2006).10.1016/j.radphyschem.2005.07.007Search in Google Scholar

25. Jo, C., Son, J. H., Lee, H. J., Byun, M. W.: Irradiation application for color removal and purification of green tea leaves extract. Radiat. Phys. Chem. 66, 179 (2003).10.1016/S0969-806X(02)00273-6Search in Google Scholar

26. Rajurkar, N. S., Gaikwad, K. N., Sadat Razavi, M.: Evaluation of free radical scavenging activity of Justicia adatoda: a gamma radiation study. Int. J. Pharm. Pharm. Sci. 4(4), 93 (2012).Search in Google Scholar

27. Alloun, K., Benchabane, O., Hazzit, M., Mouhouche, F., Baaliouamer, A., Chikhoune, A., Benchabane, A.: Effect of gamma ray irradiation on chemical composition, antioxidant, antimicrobial, and insecticidal activities of Thymus pallescens essential oil. Acta Chromatogr. 31(1), 57 (2019).10.1556/1326.2017.00346Search in Google Scholar

28. Ahn, H. J., Kim, J. H., Jo, C., Kim, M. J., Byun, M. W.: Comparison of irradiated phytic acid and other antioxidants for antioxidant activity. Food Chem. 88, 173 (2004).10.1016/j.foodchem.2004.02.001Search in Google Scholar

29. Ahn, H. J., Kim, J. H., Kim, J. K., Kim, D. H., Yook, H. S., Byun, M. W.: Combined effects of irradiation and modified atmosphere packaging on minimally processed Chinese cabbage (Brassica rapa L.). Food Chem. 89, 589 (2005).10.1016/j.foodchem.2004.03.029Search in Google Scholar

30. Ioannou, I., Ghoul, M.: Biological activities and effects of food processing on flavonoids as phenolic antioxidants. In: M. Petre (Ed.), Advances in Applied Biotechnology, Chapter 5, InTech, Rijeka, Croatia, 101 (2012). Available at: https://www.intechopen.com/books/advances-in-applied-biotechnology/biological-activities-and-effects-of-food-processing-on-flavonoids-as-phenolic-antioxidants. ISBN: 978-953-307-820-5.Search in Google Scholar

31. European Food Safety Authority: Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food on a request from the Commission on the use of Rosemary extracts as a food additive. EFSA J. 721, 1 (2008).Search in Google Scholar

32. Nawaz, H., Aslam Shad, M., Rehman, T., Ramzan, A.: Influence of high-dose gamma radiation and particle size on antioxidant properties of Maize (Zea mays L.) flour. Braz. J. Pharm. Sci. 52(4), 771 (2016).10.1590/s1984-82502016000400022Search in Google Scholar

33. Sandarani, M. D. J. C., Dasanayaka, D. C. M. C. K., Jayasinghe, C. V. L.: Strategies used to prolong the shelf life of fresh commodities. J. Agric. Sci. Food Res. 9, 206 (2018).Search in Google Scholar

Received: 2019-02-03
Accepted: 2019-09-22
Published Online: 2019-10-17
Published in Print: 2020-06-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2019-3113/html
Scroll to top button